libxkbcommon/test/common.c

457 lines
12 KiB
C
Raw Normal View History

/*
* Copyright © 2009 Dan Nicholson <dbn.lists@gmail.com>
* Copyright © 2012 Intel Corporation
* Copyright © 2012 Ran Benita <ran234@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the names of the authors or their
* institutions shall not be used in advertising or otherwise to promote the
* sale, use or other dealings in this Software without prior written
* authorization from the authors.
*
* Author: Dan Nicholson <dbn.lists@gmail.com>
* Daniel Stone <daniel@fooishbar.org>
* Ran Benita <ran234@gmail.com>
*/
#include <limits.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "test.h"
/*
* Test a sequence of keysyms, resulting from a sequence of key presses,
* against the keysyms they're supposed to generate.
*
* - Each test runs with a clean state.
* - Each line in the test is made up of:
* + A keycode, given as a KEY_* from linux/input.h.
* + A direction - DOWN for press, UP for release, BOTH for
* immediate press + release, REPEAT to just get the syms.
* + A sequence of keysyms that should result from this keypress.
*
* The vararg format is:
* <KEY_*> <DOWN | UP | BOTH> <XKB_KEY_* (zero or more)> <NEXT | FINISH>
*
* See below for examples.
*/
int
test_key_seq_va(struct xkb_keymap *keymap, va_list ap)
{
struct xkb_state *state;
xkb_keycode_t kc;
int op;
xkb_keysym_t keysym;
const xkb_keysym_t *syms;
state: fix consumed modifier calculation The current calculation is in short: entry ? (entry->mask & ~entry->preserve) : 0 This changes it be type->mask & ~(entry ? entry->preserve : 0) This is what Xlib does. While less intuitive, it is actually more correct, if you follow this deduction: - The key group's type->mask defines which modifiers the key even cares about. The others are completely irrelevant (and in fact they are masked out from all sided in the level calculation). Example: NumLock for an alphabetic key. - The type->mask, the mods which are not masked out, are *all* relevant (and in fact in the level calculation they must match *exactly* to the state). These mods affect which level is chosen for the key, whether they are active or not. - Because the type->mask mods are all relevant, they must be considered as consumed by the calculation *even if they are not active*. Therefore we use type->mask instead of entry->mask. The second change is what happens when no entry is found: return 0 or just take preserve to be 0? Let's consider an example, the basic type type "ALPHABETIC" { modifiers = Shift+Lock; map[Shift] = Level2; map[Lock] = Level2; level_name[Level1] = "Base"; level_name[Level2] = "Caps"; }; Suppose Shift+Lock is active - it doesn't match any entry, thus it gets to level 0. The first interpretation would take them both to be unconsumed, the second (new one) would take them both to be consumed. This seems much better: Caps is active, and Shift disables it, they both do something. This change also fixes a pretty lousy bug (since 0.3.2), where Shift appears to apparently *not* disable Caps. What actually happens is that Caps is not consumed (see above) but active, thus the implicit capitalization in get_one_sym() kicks in and capitalizes it anyway. Reported-by: Davinder Pal Singh Bhamra Signed-off-by: Ran Benita <ran234@gmail.com>
2014-03-27 09:42:20 -06:00
xkb_keysym_t sym;
unsigned int nsyms, i;
char ksbuf[64];
fprintf(stderr, "----\n");
state = xkb_state_new(keymap);
assert(state);
for (;;) {
kc = va_arg(ap, int) + EVDEV_OFFSET;
op = va_arg(ap, int);
nsyms = xkb_state_key_get_syms(state, kc, &syms);
state: fix consumed modifier calculation The current calculation is in short: entry ? (entry->mask & ~entry->preserve) : 0 This changes it be type->mask & ~(entry ? entry->preserve : 0) This is what Xlib does. While less intuitive, it is actually more correct, if you follow this deduction: - The key group's type->mask defines which modifiers the key even cares about. The others are completely irrelevant (and in fact they are masked out from all sided in the level calculation). Example: NumLock for an alphabetic key. - The type->mask, the mods which are not masked out, are *all* relevant (and in fact in the level calculation they must match *exactly* to the state). These mods affect which level is chosen for the key, whether they are active or not. - Because the type->mask mods are all relevant, they must be considered as consumed by the calculation *even if they are not active*. Therefore we use type->mask instead of entry->mask. The second change is what happens when no entry is found: return 0 or just take preserve to be 0? Let's consider an example, the basic type type "ALPHABETIC" { modifiers = Shift+Lock; map[Shift] = Level2; map[Lock] = Level2; level_name[Level1] = "Base"; level_name[Level2] = "Caps"; }; Suppose Shift+Lock is active - it doesn't match any entry, thus it gets to level 0. The first interpretation would take them both to be unconsumed, the second (new one) would take them both to be consumed. This seems much better: Caps is active, and Shift disables it, they both do something. This change also fixes a pretty lousy bug (since 0.3.2), where Shift appears to apparently *not* disable Caps. What actually happens is that Caps is not consumed (see above) but active, thus the implicit capitalization in get_one_sym() kicks in and capitalizes it anyway. Reported-by: Davinder Pal Singh Bhamra Signed-off-by: Ran Benita <ran234@gmail.com>
2014-03-27 09:42:20 -06:00
if (nsyms == 1) {
sym = xkb_state_key_get_one_sym(state, kc);
syms = &sym;
}
fprintf(stderr, "got %u syms for keycode %u: [", nsyms, kc);
if (op == DOWN || op == BOTH)
xkb_state_update_key(state, kc, XKB_KEY_DOWN);
if (op == UP || op == BOTH)
xkb_state_update_key(state, kc, XKB_KEY_UP);
for (i = 0; i < nsyms; i++) {
keysym = va_arg(ap, int);
xkb_keysym_get_name(syms[i], ksbuf, sizeof(ksbuf));
fprintf(stderr, "%s%s", (i != 0) ? ", " : "", ksbuf);
if (keysym == FINISH || keysym == NEXT) {
xkb_keysym_get_name(syms[i], ksbuf, sizeof(ksbuf));
fprintf(stderr, "Did not expect keysym: %s.\n", ksbuf);
goto fail;
}
if (keysym != syms[i]) {
xkb_keysym_get_name(keysym, ksbuf, sizeof(ksbuf));
fprintf(stderr, "Expected keysym: %s. ", ksbuf);;
xkb_keysym_get_name(syms[i], ksbuf, sizeof(ksbuf));
fprintf(stderr, "Got keysym: %s.\n", ksbuf);;
goto fail;
}
}
if (nsyms == 0) {
keysym = va_arg(ap, int);
if (keysym != XKB_KEY_NoSymbol) {
xkb_keysym_get_name(keysym, ksbuf, sizeof(ksbuf));
fprintf(stderr, "Expected %s, but got no keysyms.\n", ksbuf);
goto fail;
}
}
fprintf(stderr, "]\n");
keysym = va_arg(ap, int);
if (keysym == NEXT)
continue;
if (keysym == FINISH)
break;
xkb_keysym_get_name(keysym, ksbuf, sizeof(ksbuf));
fprintf(stderr, "Expected keysym: %s. Didn't get it.\n", ksbuf);
goto fail;
}
xkb_state_unref(state);
return 1;
fail:
xkb_state_unref(state);
return 0;
}
int
test_key_seq(struct xkb_keymap *keymap, ...)
{
va_list ap;
int ret;
va_start(ap, keymap);
ret = test_key_seq_va(keymap, ap);
va_end(ap);
return ret;
}
char *
test_get_path(const char *path_rel)
{
char *path;
size_t path_len;
const char *srcdir = getenv("srcdir");
path_len = strlen(srcdir ? srcdir : ".") +
strlen(path_rel ? path_rel : "") + 12;
path = malloc(path_len);
if (!path) {
fprintf(stderr, "Failed to allocate path (%d chars) for %s\n",
(int) path_len, path);
return NULL;
}
snprintf(path, path_len,
"%s/test/data/%s", srcdir ? srcdir : ".",
path_rel ? path_rel : "");
return path;
}
char *
test_read_file(const char *path_rel)
{
struct stat info;
char *ret, *tmp, *path;
int fd, count, remaining;
path = test_get_path(path_rel);
if (!path)
return NULL;
fd = open(path, O_RDONLY);
free(path);
if (fd < 0)
return NULL;
if (fstat(fd, &info) != 0) {
close(fd);
return NULL;
}
ret = malloc(info.st_size + 1);
if (!ret) {
close(fd);
return NULL;
}
remaining = info.st_size;
tmp = ret;
while ((count = read(fd, tmp, remaining))) {
remaining -= count;
tmp += count;
}
ret[info.st_size] = '\0';
close(fd);
if (remaining != 0) {
free(ret);
return NULL;
}
return ret;
}
struct xkb_context *
test_get_context(enum test_context_flags test_flags)
{
enum xkb_context_flags ctx_flags;
struct xkb_context *ctx;
char *path;
ctx_flags = XKB_CONTEXT_NO_DEFAULT_INCLUDES;
if (test_flags & CONTEXT_ALLOW_ENVIRONMENT_NAMES) {
unsetenv("XKB_DEFAULT_RULES");
unsetenv("XKB_DEFAULT_MODEL");
unsetenv("XKB_DEFAULT_LAYOUT");
unsetenv("XKB_DEFAULT_VARIANT");
unsetenv("XKB_DEFAULT_OPTIONS");
}
else {
ctx_flags |= XKB_CONTEXT_NO_ENVIRONMENT_NAMES;
}
ctx = xkb_context_new(ctx_flags);
if (!ctx)
return NULL;
path = test_get_path("");
if (!path)
return NULL;
xkb_context_include_path_append(ctx, path);
free(path);
return ctx;
}
struct xkb_keymap *
test_compile_file(struct xkb_context *context, const char *path_rel)
{
struct xkb_keymap *keymap;
FILE *file;
char *path;
path = test_get_path(path_rel);
if (!path)
return NULL;
file = fopen(path, "r");
if (!file) {
fprintf(stderr, "Failed to open path: %s\n", path);
free(path);
return NULL;
}
assert(file != NULL);
keymap = xkb_keymap_new_from_file(context, file,
XKB_KEYMAP_FORMAT_TEXT_V1, 0);
fclose(file);
if (!keymap) {
fprintf(stderr, "Failed to compile path: %s\n", path);
free(path);
return NULL;
}
fprintf(stderr, "Successfully compiled path: %s\n", path);
free(path);
return keymap;
}
struct xkb_keymap *
test_compile_string(struct xkb_context *context, const char *string)
{
struct xkb_keymap *keymap;
keymap = xkb_keymap_new_from_string(context, string,
XKB_KEYMAP_FORMAT_TEXT_V1, 0);
if (!keymap) {
fprintf(stderr, "Failed to compile string\n");
return NULL;
}
return keymap;
}
keymap: add xkb_keymap_new_from_buffer() The current API doesn't allow the caller to create keymaps from mmap()'ed files. The problem is, xkb_keymap_new_from_string() requires a terminating 0 byte. However, there is no way to guarantee that when using mmap() so a user currently has to copy the whole file just to get the terminating zero byte (assuming they cannot use xkb_keymap_new_from_file()). This adds a new entry xkb_keymap_new_from_buffer() which takes a memory location and the buffer size in bytes. Internally, we depend on yy_scan_{string,byte}() helpers. According to flex documentation these already copy the input string because they are wrappers around yy_scan_buffer(). yy_scan_buffer() on the other hand has some insane requirements. The buffer must be writeable and the last two bytes must be ASCII-NUL. But the buffer may contain other 0 bytes just fine. Because we don't want these constraints in our public API, xkb_keymap_new_from_buffer() needs to create a copy of the input memory. But it then calls yy_scan_buffer() directly. Hence, we have the same number of buffer-copies as with *_from_string() but without the terminating 0 requirement. The explicit yy_scan_buffer() call is preferred over yy_scan_byte() so the buffer-copy operation is not hidden somewhere in flex. Maybe some day we no longer depend on flex and can have a zero-copy API. A user could mmap() a file and it would get parsed right from this buffer. But until then, we shouldn't expose this limitation in the API but instead provide an API that some day can work with zero-copy. Signed-off-by: David Herrmann <dh.herrmann@gmail.com> [ran: rebased on top of my branch] Conflicts: Makefile.am src/xkbcomp/xkbcomp.c
2013-03-11 05:53:39 -06:00
struct xkb_keymap *
test_compile_buffer(struct xkb_context *context, const char *buf, size_t len)
{
struct xkb_keymap *keymap;
keymap = xkb_keymap_new_from_buffer(context, buf, len,
XKB_KEYMAP_FORMAT_TEXT_V1, 0);
if (!keymap) {
fprintf(stderr, "Failed to compile keymap from memory buffer\n");
return NULL;
}
return keymap;
}
struct xkb_keymap *
test_compile_rules(struct xkb_context *context, const char *rules,
const char *model, const char *layout,
const char *variant, const char *options)
{
struct xkb_keymap *keymap;
struct xkb_rule_names rmlvo = {
.rules = isempty(rules) ? NULL : rules,
.model = isempty(model) ? NULL : model,
.layout = isempty(layout) ? NULL : layout,
.variant = isempty(variant) ? NULL : variant,
.options = isempty(options) ? NULL : options
};
if (!rules && !model && !layout && !variant && !options)
keymap = xkb_keymap_new_from_names(context, NULL, 0);
else
keymap = xkb_keymap_new_from_names(context, &rmlvo, 0);
if (!keymap) {
fprintf(stderr,
"Failed to compile RMLVO: '%s', '%s', '%s', '%s', '%s'\n",
rules, model, layout, variant, options);
return NULL;
}
return keymap;
}
void
test_print_keycode_state(struct xkb_state *state,
struct xkb_compose_state *compose_state,
xkb_keycode_t keycode)
{
struct xkb_keymap *keymap;
xkb_keysym_t sym;
const xkb_keysym_t *syms;
int nsyms;
char s[16];
xkb_layout_index_t layout;
enum xkb_compose_status status;
keymap = xkb_state_get_keymap(state);
nsyms = xkb_state_key_get_syms(state, keycode, &syms);
if (nsyms <= 0)
return;
status = XKB_COMPOSE_NOTHING;
if (compose_state)
status = xkb_compose_state_get_status(compose_state);
if (status == XKB_COMPOSE_COMPOSING || status == XKB_COMPOSE_CANCELLED)
return;
if (status == XKB_COMPOSE_COMPOSED) {
sym = xkb_compose_state_get_one_sym(compose_state);
syms = &sym;
nsyms = 1;
}
else if (nsyms == 1) {
sym = xkb_state_key_get_one_sym(state, keycode);
syms = &sym;
}
printf("keysyms [ ");
for (int i = 0; i < nsyms; i++) {
xkb_keysym_get_name(syms[i], s, sizeof(s));
printf("%-*s ", (int) sizeof(s), s);
}
printf("] ");
if (status == XKB_COMPOSE_COMPOSED)
xkb_compose_state_get_utf8(compose_state, s, sizeof(s));
else
xkb_state_key_get_utf8(state, keycode, s, sizeof(s));
printf("unicode [ %s ] ", s);
layout = xkb_state_key_get_layout(state, keycode);
printf("layout [ %s (%d) ] ",
xkb_keymap_layout_get_name(keymap, layout), layout);
printf("level [ %d ] ",
xkb_state_key_get_level(state, keycode, layout));
printf("mods [ ");
for (xkb_mod_index_t mod = 0; mod < xkb_keymap_num_mods(keymap); mod++) {
if (xkb_state_mod_index_is_active(state, mod,
XKB_STATE_MODS_EFFECTIVE) <= 0)
continue;
if (xkb_state_mod_index_is_consumed(state, keycode, mod))
printf("-%s ", xkb_keymap_mod_get_name(keymap, mod));
else
printf("%s ", xkb_keymap_mod_get_name(keymap, mod));
}
printf("] ");
printf("leds [ ");
for (xkb_led_index_t led = 0; led < xkb_keymap_num_leds(keymap); led++) {
if (xkb_state_led_index_is_active(state, led) <= 0)
continue;
printf("%s ", xkb_keymap_led_get_name(keymap, led));
}
printf("] ");
printf("\n");
}
void
test_print_state_changes(enum xkb_state_component changed)
{
if (changed == 0)
return;
printf("changed [ ");
if (changed & XKB_STATE_LAYOUT_EFFECTIVE)
printf("effective-layout ");
if (changed & XKB_STATE_LAYOUT_DEPRESSED)
printf("depressed-layout ");
if (changed & XKB_STATE_LAYOUT_LATCHED)
printf("latched-layout ");
if (changed & XKB_STATE_LAYOUT_LOCKED)
printf("locked-layout ");
if (changed & XKB_STATE_MODS_EFFECTIVE)
printf("effective-mods ");
if (changed & XKB_STATE_MODS_DEPRESSED)
printf("depressed-mods ");
if (changed & XKB_STATE_MODS_LATCHED)
printf("latched-mods ");
if (changed & XKB_STATE_MODS_LOCKED)
printf("locked-mods ");
if (changed & XKB_STATE_LEDS)
printf("leds ");
printf("]\n");
}