atom: rewrite as a hash table

While the previous 1987-style[0] scheme was fun (and I reasonably
optimized it for a fair comparison), this task is more suited to a hash
table. Even a simple implementation beats the old one.

[0] Seems to have first appeared in X11R1, released September 1987.
    See server/dix/atom.c here: https://www.x.org/releases/X11R1/X.V11R1.tar.gz

Signed-off-by: Ran Benita <ran@unusedvar.com>
master
Ran Benita 2019-11-02 16:19:32 +02:00
parent baf5522649
commit 16fe837d8d
1 changed files with 63 additions and 67 deletions

View File

@ -72,8 +72,14 @@
#include "config.h" #include "config.h"
#include "utils.h" #include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <string.h>
#include "atom.h" #include "atom.h"
#include "darray.h"
#include "utils.h"
/* FNV-1a (http://www.isthe.com/chongo/tech/comp/fnv/). */ /* FNV-1a (http://www.isthe.com/chongo/tech/comp/fnv/). */
static inline uint32_t static inline uint32_t
@ -90,31 +96,14 @@ hash_buf(const char *string, size_t len)
} }
/* /*
* The atom table is a insert-only unbalanced binary search tree * The atom table is an insert-only linear probing hash table
* mapping strings to atoms. * mapping strings to atoms. Another array maps the atoms to
* * strings. The atom value is the position in the strings array.
* The tree nodes are kept contiguously in the `table` array.
*
* The atom value is the index of the tree node in the array.
*
* As an optimization, strings are not compared by value directly,
* s1 < s2
* instead, they are compared by fingerprint (hash) and the value
* is only used to resolve collisions:
* (fingerprint(s1), s1) < (fingerprint(s2), s2)
* Fingerprint are pre-calculated and saved in the tree nodes.
*
* Why is this not just a hash table? Who knows!
*/ */
struct atom_node {
xkb_atom_t left, right;
uint32_t fingerprint;
char *string;
};
struct atom_table { struct atom_table {
xkb_atom_t root; xkb_atom_t *index;
darray(struct atom_node) table; size_t index_size;
darray(char *) strings;
}; };
struct atom_table * struct atom_table *
@ -124,9 +113,10 @@ atom_table_new(void)
if (!table) if (!table)
return NULL; return NULL;
darray_init(table->table); darray_init(table->strings);
/* The original throw-away root is here, at the illegal atom 0. */ darray_append(table->strings, NULL);
darray_resize0(table->table, 1); table->index_size = 4;
table->index = calloc(table->index_size, sizeof(*table->index));
return table; return table;
} }
@ -137,61 +127,67 @@ atom_table_free(struct atom_table *table)
if (!table) if (!table)
return; return;
struct atom_node *node; char **string;
darray_foreach(node, table->table) darray_foreach(string, table->strings)
free(node->string); free(*string);
darray_free(table->table); darray_free(table->strings);
free(table->index);
free(table); free(table);
} }
const char * const char *
atom_text(struct atom_table *table, xkb_atom_t atom) atom_text(struct atom_table *table, xkb_atom_t atom)
{ {
assert(atom < darray_size(table->table)); assert(atom < darray_size(table->strings));
return darray_item(table->table, atom).string; return darray_item(table->strings, atom);
} }
xkb_atom_t xkb_atom_t
atom_intern(struct atom_table *table, const char *string, size_t len, bool add) atom_intern(struct atom_table *table, const char *string, size_t len, bool add)
{ {
uint32_t fingerprint = hash_buf(string, len); if (darray_size(table->strings) > 0.80 * table->index_size) {
table->index_size *= 2;
table->index = realloc(table->index, table->index_size * sizeof(*table->index));
memset(table->index, 0, table->index_size * sizeof(*table->index));
for (size_t j = 1; j < darray_size(table->strings); j++) {
const char *s = darray_item(table->strings, j);
uint32_t hash = hash_buf(s, strlen(s));
for (size_t i = 0; i < table->index_size; i++) {
size_t index_pos = (hash + i) & (table->index_size - 1);
if (index_pos == 0)
continue;
xkb_atom_t *atomp = &table->root; xkb_atom_t atom = table->index[index_pos];
while (*atomp != XKB_ATOM_NONE) { if (atom == XKB_ATOM_NONE) {
struct atom_node *node = &darray_item(table->table, *atomp); table->index[index_pos] = j;
break;
if (fingerprint > node->fingerprint) {
atomp = &node->right;
} }
else if (fingerprint < node->fingerprint) {
atomp = &node->left;
}
else {
/* Now start testing the strings. */
const int cmp = strncmp(string, node->string, len);
if (likely(cmp == 0 && node->string[len] == '\0')) {
return *atomp;
}
else if (cmp > 0) {
atomp = &node->right;
}
else {
atomp = &node->left;
} }
} }
} }
if (!add) uint32_t hash = hash_buf(string, len);
for (size_t i = 0; i < table->index_size; i++) {
size_t index_pos = (hash + i) & (table->index_size - 1);
if (index_pos == 0)
continue;
xkb_atom_t existing_atom = table->index[index_pos];
if (existing_atom == XKB_ATOM_NONE) {
if (add) {
xkb_atom_t new_atom = darray_size(table->strings);
darray_append(table->strings, strndup(string, len));
table->index[index_pos] = new_atom;
return new_atom;
} else {
return XKB_ATOM_NONE; return XKB_ATOM_NONE;
}
struct atom_node node; }
node.string = strndup(string, len);
assert(node.string != NULL); const char *existing_value = darray_item(table->strings, existing_atom);
node.left = node.right = XKB_ATOM_NONE; if (strncmp(existing_value, string, len) == 0 && existing_value[len] == '\0')
node.fingerprint = fingerprint; return existing_atom;
xkb_atom_t atom = darray_size(table->table); }
/* Do this before the append, as it may realloc and change the offsets. */
*atomp = atom; assert(!"couldn't find an empty slot during probing");
darray_append(table->table, node);
return atom;
} }