/************************************************************ Copyright (c) 1994 by Silicon Graphics Computer Systems, Inc. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Silicon Graphics not be used in advertising or publicity pertaining to distribution of the software without specific prior written permission. Silicon Graphics makes no representation about the suitability of this software for any purpose. It is provided "as is" without any express or implied warranty. SILICON GRAPHICS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ********************************************************/ #include "xkbcomp.h" #include "xkbmisc.h" #include "expr.h" #include "vmod.h" #include /***====================================================================***/ typedef Bool(*IdentLookupFunc) (const void * /* priv */ , xkb_atom_t /* field */ , unsigned /* type */ , ExprResult * /* val_rtrn */ ); /***====================================================================***/ const char * exprOpText(unsigned type) { static char buf[32]; switch (type) { case ExprValue: strcpy(buf, "literal"); break; case ExprIdent: strcpy(buf, "identifier"); break; case ExprActionDecl: strcpy(buf, "action declaration"); break; case ExprFieldRef: strcpy(buf, "field reference"); break; case ExprArrayRef: strcpy(buf, "array reference"); break; case ExprKeysymList: strcpy(buf, "list of keysyms"); break; case ExprActionList: strcpy(buf, "list of actions"); break; case OpAdd: strcpy(buf, "addition"); break; case OpSubtract: strcpy(buf, "subtraction"); break; case OpMultiply: strcpy(buf, "multiplication"); break; case OpDivide: strcpy(buf, "division"); break; case OpAssign: strcpy(buf, "assignment"); break; case OpNot: strcpy(buf, "logical not"); break; case OpNegate: strcpy(buf, "arithmetic negation"); break; case OpInvert: strcpy(buf, "bitwise inversion"); break; case OpUnaryPlus: strcpy(buf, "plus sign"); break; default: snprintf(buf, sizeof(buf), "illegal(%d)", type); break; } return buf; } static const char * exprTypeText(unsigned type) { static char buf[20]; switch (type) { case TypeUnknown: strcpy(buf, "unknown"); break; case TypeBoolean: strcpy(buf, "boolean"); break; case TypeInt: strcpy(buf, "int"); break; case TypeString: strcpy(buf, "string"); break; case TypeAction: strcpy(buf, "action"); break; case TypeKeyName: strcpy(buf, "keyname"); break; default: snprintf(buf, sizeof(buf), "illegal(%d)", type); break; } return buf; } int ExprResolveLhs(ExprDef * expr, ExprResult * elem_rtrn, ExprResult * field_rtrn, ExprDef ** index_rtrn) { switch (expr->op) { case ExprIdent: elem_rtrn->str = NULL; field_rtrn->str = XkbcAtomGetString(expr->value.str); *index_rtrn = NULL; return True; case ExprFieldRef: elem_rtrn->str = XkbcAtomGetString(expr->value.field.element); field_rtrn->str = XkbcAtomGetString(expr->value.field.field); *index_rtrn = NULL; return True; case ExprArrayRef: elem_rtrn->str = XkbcAtomGetString(expr->value.array.element); field_rtrn->str = XkbcAtomGetString(expr->value.array.field); *index_rtrn = expr->value.array.entry; return True; } WSGO("Unexpected operator %d in ResolveLhs\n", expr->op); return False; } static Bool SimpleLookup(const void * priv, xkb_atom_t field, unsigned type, ExprResult * val_rtrn) { const LookupEntry *entry; const char *str; if ((priv == NULL) || (field == None) || (type != TypeInt)) { return False; } str = XkbcAtomText(field); for (entry = priv; (entry != NULL) && (entry->name != NULL); entry++) { if (uStrCaseCmp(str, entry->name) == 0) { val_rtrn->uval = entry->result; return True; } } return False; } static const LookupEntry modIndexNames[] = { {"shift", ShiftMapIndex}, {"control", ControlMapIndex}, {"lock", LockMapIndex}, {"mod1", Mod1MapIndex}, {"mod2", Mod2MapIndex}, {"mod3", Mod3MapIndex}, {"mod4", Mod4MapIndex}, {"mod5", Mod5MapIndex}, {"none", XkbNoModifier}, {NULL, 0} }; int LookupModIndex(const void * priv, xkb_atom_t field, unsigned type, ExprResult * val_rtrn) { return SimpleLookup(modIndexNames, field, type, val_rtrn); } int LookupModMask(const void * priv, xkb_atom_t field, unsigned type, ExprResult * val_rtrn) { char *str; Bool ret = True; if (type != TypeInt) return False; str = XkbcAtomText(field); if (str == NULL) return False; if (uStrCaseCmp(str, "all") == 0) val_rtrn->uval = 0xff; else if (uStrCaseCmp(str, "none") == 0) val_rtrn->uval = 0; else if (LookupModIndex(priv, field, type, val_rtrn)) val_rtrn->uval = (1 << val_rtrn->uval); else ret = False; return ret; } int ExprResolveBoolean(ExprDef * expr, ExprResult * val_rtrn) { int ok = 0; const char *bogus = NULL; switch (expr->op) { case ExprValue: if (expr->type != TypeBoolean) { ERROR ("Found constant of type %s where boolean was expected\n", exprTypeText(expr->type)); return False; } val_rtrn->ival = expr->value.ival; return True; case ExprIdent: bogus = XkbcAtomText(expr->value.str); if (bogus) { if ((uStrCaseCmp(bogus, "true") == 0) || (uStrCaseCmp(bogus, "yes") == 0) || (uStrCaseCmp(bogus, "on") == 0)) { val_rtrn->uval = 1; return True; } else if ((uStrCaseCmp(bogus, "false") == 0) || (uStrCaseCmp(bogus, "no") == 0) || (uStrCaseCmp(bogus, "off") == 0)) { val_rtrn->uval = 0; return True; } } ERROR("Identifier \"%s\" of type int is unknown\n", XkbcAtomText(expr->value.str)); return False; case ExprFieldRef: ERROR("Default \"%s.%s\" of type boolean is unknown\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case OpInvert: case OpNot: ok = ExprResolveBoolean(expr, val_rtrn); if (ok) val_rtrn->uval = !val_rtrn->uval; return ok; case OpAdd: if (bogus == NULL) bogus = "Addition"; case OpSubtract: if (bogus == NULL) bogus = "Subtraction"; case OpMultiply: if (bogus == NULL) bogus = "Multiplication"; case OpDivide: if (bogus == NULL) bogus = "Division"; case OpAssign: if (bogus == NULL) bogus = "Assignment"; case OpNegate: if (bogus == NULL) bogus = "Negation"; ERROR("%s of boolean values not permitted\n", bogus); break; case OpUnaryPlus: ERROR("Unary \"+\" operator not permitted for boolean values\n"); break; default: WSGO("Unknown operator %d in ResolveBoolean\n", expr->op); break; } return False; } int ExprResolveFloat(ExprDef * expr, ExprResult * val_rtrn) { int ok = 0; ExprResult leftRtrn, rightRtrn; ExprDef *left, *right; switch (expr->op) { case ExprValue: if (expr->type == TypeString) { const char *str; str = XkbcAtomText(expr->value.str); if ((str != NULL) && (strlen(str) == 1)) { val_rtrn->uval = str[0] * XkbGeomPtsPerMM; return True; } } if (expr->type != TypeInt) { ERROR("Found constant of type %s, expected a number\n", exprTypeText(expr->type)); return False; } val_rtrn->ival = expr->value.ival; if (expr->type == TypeInt) val_rtrn->ival *= XkbGeomPtsPerMM; return True; case ExprIdent: ERROR("Numeric identifier \"%s\" unknown\n", XkbcAtomText(expr->value.str)); return ok; case ExprFieldRef: ERROR("Numeric default \"%s.%s\" unknown\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case OpAdd: case OpSubtract: case OpMultiply: case OpDivide: left = expr->value.binary.left; right = expr->value.binary.right; if (ExprResolveFloat(left, &leftRtrn) && ExprResolveFloat(right, &rightRtrn)) { switch (expr->op) { case OpAdd: val_rtrn->ival = leftRtrn.ival + rightRtrn.ival; break; case OpSubtract: val_rtrn->ival = leftRtrn.ival - rightRtrn.ival; break; case OpMultiply: val_rtrn->ival = leftRtrn.ival * rightRtrn.ival; break; case OpDivide: val_rtrn->ival = leftRtrn.ival / rightRtrn.ival; break; } return True; } return False; case OpAssign: WSGO("Assignment operator not implemented yet\n"); break; case OpNot: ERROR("The ! operator cannot be applied to a number\n"); return False; case OpInvert: case OpNegate: left = expr->value.child; if (ExprResolveFloat(left, &leftRtrn)) { if (expr->op == OpNegate) val_rtrn->ival = -leftRtrn.ival; else val_rtrn->ival = ~leftRtrn.ival; return True; } return False; case OpUnaryPlus: left = expr->value.child; return ExprResolveFloat(left, val_rtrn); default: WSGO("Unknown operator %d in ResolveFloat\n", expr->op); break; } return False; } int ExprResolveKeyCode(ExprDef * expr, ExprResult * val_rtrn) { ExprResult leftRtrn, rightRtrn; ExprDef *left, *right; switch (expr->op) { case ExprValue: if (expr->type != TypeInt) { ERROR ("Found constant of type %s where an int was expected\n", exprTypeText(expr->type)); return False; } val_rtrn->uval = expr->value.uval; return True; case OpAdd: case OpSubtract: case OpMultiply: case OpDivide: left = expr->value.binary.left; right = expr->value.binary.right; if (ExprResolveKeyCode(left, &leftRtrn) && ExprResolveKeyCode(right, &rightRtrn)) { switch (expr->op) { case OpAdd: val_rtrn->uval = leftRtrn.uval + rightRtrn.uval; break; case OpSubtract: val_rtrn->uval = leftRtrn.uval - rightRtrn.uval; break; case OpMultiply: val_rtrn->uval = leftRtrn.uval * rightRtrn.uval; break; case OpDivide: val_rtrn->uval = leftRtrn.uval / rightRtrn.uval; break; } return True; } return False; case OpNegate: left = expr->value.child; if (ExprResolveKeyCode(left, &leftRtrn)) { val_rtrn->uval = ~leftRtrn.uval; return True; } return False; case OpUnaryPlus: left = expr->value.child; return ExprResolveKeyCode(left, val_rtrn); default: WSGO("Unknown operator %d in ResolveKeyCode\n", expr->op); break; } return False; } /** * This function returns ... something. It's a bit of a guess, really. * * If a string is given in value context, its first character will be * returned in uval. If an integer is given in value context, it will be * returned in ival. If a float is given in value context, it will be * returned as millimetres (rather than points) in ival. * * If an ident or field reference is given, the lookup function (if given) * will be called. At the moment, only SimpleLookup use this, and they both * return the results in uval. And don't support field references. * * Cool. */ static int ExprResolveIntegerLookup(ExprDef * expr, ExprResult * val_rtrn, IdentLookupFunc lookup, const void * lookupPriv) { int ok = 0; ExprResult leftRtrn, rightRtrn; ExprDef *left, *right; switch (expr->op) { case ExprValue: if (expr->type == TypeString) { const char *str; str = XkbcAtomText(expr->value.str); if (str != NULL) switch (strlen(str)) { case 0: val_rtrn->uval = 0; return True; case 1: val_rtrn->uval = str[0]; return True; default: break; } } if (expr->type != TypeInt) { ERROR ("Found constant of type %s where an int was expected\n", exprTypeText(expr->type)); return False; } val_rtrn->ival = expr->value.ival; return True; case ExprIdent: if (lookup) { ok = (*lookup) (lookupPriv, expr->value.str, TypeInt, val_rtrn); } if (!ok) ERROR("Identifier \"%s\" of type int is unknown\n", XkbcAtomText(expr->value.str)); return ok; case ExprFieldRef: ERROR("Default \"%s.%s\" of type int is unknown\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case OpAdd: case OpSubtract: case OpMultiply: case OpDivide: left = expr->value.binary.left; right = expr->value.binary.right; if (ExprResolveIntegerLookup(left, &leftRtrn, lookup, lookupPriv) && ExprResolveIntegerLookup(right, &rightRtrn, lookup, lookupPriv)) { switch (expr->op) { case OpAdd: val_rtrn->ival = leftRtrn.ival + rightRtrn.ival; break; case OpSubtract: val_rtrn->ival = leftRtrn.ival - rightRtrn.ival; break; case OpMultiply: val_rtrn->ival = leftRtrn.ival * rightRtrn.ival; break; case OpDivide: val_rtrn->ival = leftRtrn.ival / rightRtrn.ival; break; } return True; } return False; case OpAssign: WSGO("Assignment operator not implemented yet\n"); break; case OpNot: ERROR("The ! operator cannot be applied to an integer\n"); return False; case OpInvert: case OpNegate: left = expr->value.child; if (ExprResolveIntegerLookup(left, &leftRtrn, lookup, lookupPriv)) { if (expr->op == OpNegate) val_rtrn->ival = -leftRtrn.ival; else val_rtrn->ival = ~leftRtrn.ival; return True; } return False; case OpUnaryPlus: left = expr->value.child; return ExprResolveIntegerLookup(left, val_rtrn, lookup, lookupPriv); default: WSGO("Unknown operator %d in ResolveInteger\n", expr->op); break; } return False; } int ExprResolveInteger(ExprDef * expr, ExprResult * val_rtrn) { return ExprResolveIntegerLookup(expr, val_rtrn, NULL, NULL); } int ExprResolveGroup(ExprDef * expr, ExprResult * val_rtrn) { int ret; static const LookupEntry group_names[] = { { "group1", 1 }, { "group2", 2 }, { "group3", 3 }, { "group4", 4 }, { "group5", 5 }, { "group6", 6 }, { "group7", 7 }, { "group8", 8 }, { NULL, 0 } }; ret = ExprResolveIntegerLookup(expr, val_rtrn, SimpleLookup, group_names); if (ret == False) return ret; if (val_rtrn->uval == 0 || val_rtrn->uval > XkbNumKbdGroups) { ERROR("Group index %d is out of range (1..%d)\n", val_rtrn->uval, XkbNumKbdGroups); return False; } return True; } int ExprResolveLevel(ExprDef * expr, ExprResult * val_rtrn) { int ret; static const LookupEntry level_names[] = { { "level1", 1 }, { "level2", 2 }, { "level3", 3 }, { "level4", 4 }, { "level5", 5 }, { "level6", 6 }, { "level7", 7 }, { "level8", 8 }, { NULL, 0 } }; ret = ExprResolveIntegerLookup(expr, val_rtrn, SimpleLookup, level_names); if (ret == False) return ret; if (val_rtrn->ival < 1 || val_rtrn->ival > XkbMaxShiftLevel) { ERROR("Shift level %d is out of range (1..%d)\n", val_rtrn->ival, XkbMaxShiftLevel); return False; } return True; } int ExprResolveButton(ExprDef * expr, ExprResult * val_rtrn) { static const LookupEntry button_names[] = { { "button1", 1 }, { "button2", 2 }, { "button3", 3 }, { "button4", 4 }, { "button5", 5 }, { "default", 0 }, { NULL, 0 } }; return ExprResolveIntegerLookup(expr, val_rtrn, SimpleLookup, button_names); } int ExprResolveString(ExprDef * expr, ExprResult * val_rtrn) { ExprResult leftRtrn, rightRtrn; ExprDef *left; ExprDef *right; const char *bogus = NULL; switch (expr->op) { case ExprValue: if (expr->type != TypeString) { ERROR("Found constant of type %s, expected a string\n", exprTypeText(expr->type)); return False; } val_rtrn->str = XkbcAtomGetString(expr->value.str); if (val_rtrn->str == NULL) val_rtrn->str = strdup(""); return True; case ExprIdent: ERROR("Identifier \"%s\" of type string not found\n", XkbcAtomText(expr->value.str)); return False; case ExprFieldRef: ERROR("Default \"%s.%s\" of type string not found\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case OpAdd: left = expr->value.binary.left; right = expr->value.binary.right; if (ExprResolveString(left, &leftRtrn) && ExprResolveString(right, &rightRtrn)) { int len; char *new; len = strlen(leftRtrn.str) + strlen(rightRtrn.str) + 1; new = malloc(len); if (new) { sprintf(new, "%s%s", leftRtrn.str, rightRtrn.str); free(leftRtrn.str); free(rightRtrn.str); val_rtrn->str = new; return True; } free(leftRtrn.str); free(rightRtrn.str); } return False; case OpSubtract: if (bogus == NULL) bogus = "Subtraction"; case OpMultiply: if (bogus == NULL) bogus = "Multiplication"; case OpDivide: if (bogus == NULL) bogus = "Division"; case OpAssign: if (bogus == NULL) bogus = "Assignment"; case OpNegate: if (bogus == NULL) bogus = "Negation"; case OpInvert: if (bogus == NULL) bogus = "Bitwise complement"; ERROR("%s of string values not permitted\n", bogus); return False; case OpNot: ERROR("The ! operator cannot be applied to a string\n"); return False; case OpUnaryPlus: ERROR("The + operator cannot be applied to a string\n"); return False; default: WSGO("Unknown operator %d in ResolveString\n", expr->op); break; } return False; } int ExprResolveKeyName(ExprDef * expr, ExprResult * val_rtrn) { const char *bogus = NULL; switch (expr->op) { case ExprValue: if (expr->type != TypeKeyName) { ERROR("Found constant of type %s, expected a key name\n", exprTypeText(expr->type)); return False; } memcpy(val_rtrn->keyName.name, expr->value.keyName, XkbKeyNameLength); return True; case ExprIdent: ERROR("Identifier \"%s\" of type string not found\n", XkbcAtomText(expr->value.str)); return False; case ExprFieldRef: ERROR("Default \"%s.%s\" of type key name not found\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case OpAdd: if (bogus == NULL) bogus = "Addition"; case OpSubtract: if (bogus == NULL) bogus = "Subtraction"; case OpMultiply: if (bogus == NULL) bogus = "Multiplication"; case OpDivide: if (bogus == NULL) bogus = "Division"; case OpAssign: if (bogus == NULL) bogus = "Assignment"; case OpNegate: if (bogus == NULL) bogus = "Negation"; case OpInvert: if (bogus == NULL) bogus = "Bitwise complement"; ERROR("%s of key name values not permitted\n", bogus); return False; case OpNot: ERROR("The ! operator cannot be applied to a key name\n"); return False; case OpUnaryPlus: ERROR("The + operator cannot be applied to a key name\n"); return False; default: WSGO("Unknown operator %d in ResolveKeyName\n", expr->op); break; } return False; } /***====================================================================***/ int ExprResolveEnum(ExprDef * expr, ExprResult * val_rtrn, const LookupEntry * values) { if (expr->op != ExprIdent) { ERROR("Found a %s where an enumerated value was expected\n", exprOpText(expr->op)); return False; } if (!SimpleLookup(values, expr->value.str, TypeInt, val_rtrn)) { int nOut = 0; ERROR("Illegal identifier %s (expected one of: ", XkbcAtomText(expr->value.str)); while (values && values->name) { if (nOut != 0) INFO(", %s", values->name); else INFO("%s", values->name); values++; nOut++; } INFO(")\n"); return False; } return True; } static int ExprResolveMaskLookup(ExprDef * expr, ExprResult * val_rtrn, IdentLookupFunc lookup, const void * lookupPriv) { int ok = 0; ExprResult leftRtrn, rightRtrn; ExprDef *left, *right; const char *bogus = NULL; switch (expr->op) { case ExprValue: if (expr->type != TypeInt) { ERROR ("Found constant of type %s where a mask was expected\n", exprTypeText(expr->type)); return False; } val_rtrn->ival = expr->value.ival; return True; case ExprIdent: ok = (*lookup) (lookupPriv, expr->value.str, TypeInt, val_rtrn); if (!ok) ERROR("Identifier \"%s\" of type int is unknown\n", XkbcAtomText(expr->value.str)); return ok; case ExprFieldRef: ERROR("Default \"%s.%s\" of type int is unknown\n", XkbcAtomText(expr->value.field.element), XkbcAtomText(expr->value.field.field)); return False; case ExprArrayRef: bogus = "array reference"; case ExprActionDecl: if (bogus == NULL) bogus = "function use"; ERROR("Unexpected %s in mask expression\n", bogus); ACTION("Expression ignored\n"); return False; case OpAdd: case OpSubtract: case OpMultiply: case OpDivide: left = expr->value.binary.left; right = expr->value.binary.right; if (ExprResolveMaskLookup(left, &leftRtrn, lookup, lookupPriv) && ExprResolveMaskLookup(right, &rightRtrn, lookup, lookupPriv)) { switch (expr->op) { case OpAdd: val_rtrn->ival = leftRtrn.ival | rightRtrn.ival; break; case OpSubtract: val_rtrn->ival = leftRtrn.ival & (~rightRtrn.ival); break; case OpMultiply: case OpDivide: ERROR("Cannot %s masks\n", expr->op == OpDivide ? "divide" : "multiply"); ACTION("Illegal operation ignored\n"); return False; } return True; } return False; case OpAssign: WSGO("Assignment operator not implemented yet\n"); break; case OpInvert: left = expr->value.child; if (ExprResolveIntegerLookup(left, &leftRtrn, lookup, lookupPriv)) { val_rtrn->ival = ~leftRtrn.ival; return True; } return False; case OpUnaryPlus: case OpNegate: case OpNot: left = expr->value.child; if (ExprResolveIntegerLookup(left, &leftRtrn, lookup, lookupPriv)) { ERROR("The %s operator cannot be used with a mask\n", (expr->op == OpNegate ? "-" : "!")); } return False; default: WSGO("Unknown operator %d in ResolveMask\n", expr->op); break; } return False; } int ExprResolveMask(ExprDef * expr, ExprResult * val_rtrn, const LookupEntry * values) { return ExprResolveMaskLookup(expr, val_rtrn, SimpleLookup, values); } int ExprResolveModMask(ExprDef * expr, ExprResult * val_rtrn) { return ExprResolveMaskLookup(expr, val_rtrn, LookupModMask, NULL); } int ExprResolveVModMask(ExprDef * expr, ExprResult * val_rtrn, struct xkb_desc *xkb) { return ExprResolveMaskLookup(expr, val_rtrn, LookupVModMask, xkb); } int ExprResolveKeySym(ExprDef * expr, ExprResult * val_rtrn) { int ok = 0; xkb_keysym_t sym; if (expr->op == ExprIdent) { const char *str; str = XkbcAtomText(expr->value.str); if ((str != NULL) && ((sym = xkb_string_to_keysym(str)) != NoSymbol)) { val_rtrn->uval = sym; return True; } } ok = ExprResolveInteger(expr, val_rtrn); if ((ok) && (val_rtrn->uval < 10)) val_rtrn->uval += '0'; return ok; }