624 lines
19 KiB
C
624 lines
19 KiB
C
|
/*
|
||
|
Simple DirectMedia Layer
|
||
|
Copyright (C) 1997-2013 Sam Lantinga <slouken@libsdl.org>
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied
|
||
|
warranty. In no event will the authors be held liable for any damages
|
||
|
arising from the use of this software.
|
||
|
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it
|
||
|
freely, subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not
|
||
|
claim that you wrote the original software. If you use this software
|
||
|
in a product, an acknowledgment in the product documentation would be
|
||
|
appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be
|
||
|
misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
#include "SDL_config.h"
|
||
|
|
||
|
/* Microsoft WAVE file loading routines */
|
||
|
|
||
|
#include "SDL_audio.h"
|
||
|
#include "SDL_wave.h"
|
||
|
|
||
|
|
||
|
static int ReadChunk(SDL_RWops * src, Chunk * chunk);
|
||
|
|
||
|
struct MS_ADPCM_decodestate
|
||
|
{
|
||
|
Uint8 hPredictor;
|
||
|
Uint16 iDelta;
|
||
|
Sint16 iSamp1;
|
||
|
Sint16 iSamp2;
|
||
|
};
|
||
|
static struct MS_ADPCM_decoder
|
||
|
{
|
||
|
WaveFMT wavefmt;
|
||
|
Uint16 wSamplesPerBlock;
|
||
|
Uint16 wNumCoef;
|
||
|
Sint16 aCoeff[7][2];
|
||
|
/* * * */
|
||
|
struct MS_ADPCM_decodestate state[2];
|
||
|
} MS_ADPCM_state;
|
||
|
|
||
|
static int
|
||
|
InitMS_ADPCM(WaveFMT * format)
|
||
|
{
|
||
|
Uint8 *rogue_feel;
|
||
|
int i;
|
||
|
|
||
|
/* Set the rogue pointer to the MS_ADPCM specific data */
|
||
|
MS_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
|
||
|
MS_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
|
||
|
MS_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
|
||
|
MS_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
|
||
|
MS_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
|
||
|
MS_ADPCM_state.wavefmt.bitspersample =
|
||
|
SDL_SwapLE16(format->bitspersample);
|
||
|
rogue_feel = (Uint8 *) format + sizeof(*format);
|
||
|
if (sizeof(*format) == 16) {
|
||
|
/* const Uint16 extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]); */
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
}
|
||
|
MS_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]);
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
MS_ADPCM_state.wNumCoef = ((rogue_feel[1] << 8) | rogue_feel[0]);
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
if (MS_ADPCM_state.wNumCoef != 7) {
|
||
|
SDL_SetError("Unknown set of MS_ADPCM coefficients");
|
||
|
return (-1);
|
||
|
}
|
||
|
for (i = 0; i < MS_ADPCM_state.wNumCoef; ++i) {
|
||
|
MS_ADPCM_state.aCoeff[i][0] = ((rogue_feel[1] << 8) | rogue_feel[0]);
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
MS_ADPCM_state.aCoeff[i][1] = ((rogue_feel[1] << 8) | rogue_feel[0]);
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
}
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static Sint32
|
||
|
MS_ADPCM_nibble(struct MS_ADPCM_decodestate *state,
|
||
|
Uint8 nybble, Sint16 * coeff)
|
||
|
{
|
||
|
const Sint32 max_audioval = ((1 << (16 - 1)) - 1);
|
||
|
const Sint32 min_audioval = -(1 << (16 - 1));
|
||
|
const Sint32 adaptive[] = {
|
||
|
230, 230, 230, 230, 307, 409, 512, 614,
|
||
|
768, 614, 512, 409, 307, 230, 230, 230
|
||
|
};
|
||
|
Sint32 new_sample, delta;
|
||
|
|
||
|
new_sample = ((state->iSamp1 * coeff[0]) +
|
||
|
(state->iSamp2 * coeff[1])) / 256;
|
||
|
if (nybble & 0x08) {
|
||
|
new_sample += state->iDelta * (nybble - 0x10);
|
||
|
} else {
|
||
|
new_sample += state->iDelta * nybble;
|
||
|
}
|
||
|
if (new_sample < min_audioval) {
|
||
|
new_sample = min_audioval;
|
||
|
} else if (new_sample > max_audioval) {
|
||
|
new_sample = max_audioval;
|
||
|
}
|
||
|
delta = ((Sint32) state->iDelta * adaptive[nybble]) / 256;
|
||
|
if (delta < 16) {
|
||
|
delta = 16;
|
||
|
}
|
||
|
state->iDelta = (Uint16) delta;
|
||
|
state->iSamp2 = state->iSamp1;
|
||
|
state->iSamp1 = (Sint16) new_sample;
|
||
|
return (new_sample);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
MS_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len)
|
||
|
{
|
||
|
struct MS_ADPCM_decodestate *state[2];
|
||
|
Uint8 *freeable, *encoded, *decoded;
|
||
|
Sint32 encoded_len, samplesleft;
|
||
|
Sint8 nybble, stereo;
|
||
|
Sint16 *coeff[2];
|
||
|
Sint32 new_sample;
|
||
|
|
||
|
/* Allocate the proper sized output buffer */
|
||
|
encoded_len = *audio_len;
|
||
|
encoded = *audio_buf;
|
||
|
freeable = *audio_buf;
|
||
|
*audio_len = (encoded_len / MS_ADPCM_state.wavefmt.blockalign) *
|
||
|
MS_ADPCM_state.wSamplesPerBlock *
|
||
|
MS_ADPCM_state.wavefmt.channels * sizeof(Sint16);
|
||
|
*audio_buf = (Uint8 *) SDL_malloc(*audio_len);
|
||
|
if (*audio_buf == NULL) {
|
||
|
return SDL_OutOfMemory();
|
||
|
}
|
||
|
decoded = *audio_buf;
|
||
|
|
||
|
/* Get ready... Go! */
|
||
|
stereo = (MS_ADPCM_state.wavefmt.channels == 2);
|
||
|
state[0] = &MS_ADPCM_state.state[0];
|
||
|
state[1] = &MS_ADPCM_state.state[stereo];
|
||
|
while (encoded_len >= MS_ADPCM_state.wavefmt.blockalign) {
|
||
|
/* Grab the initial information for this block */
|
||
|
state[0]->hPredictor = *encoded++;
|
||
|
if (stereo) {
|
||
|
state[1]->hPredictor = *encoded++;
|
||
|
}
|
||
|
state[0]->iDelta = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
if (stereo) {
|
||
|
state[1]->iDelta = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
}
|
||
|
state[0]->iSamp1 = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
if (stereo) {
|
||
|
state[1]->iSamp1 = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
}
|
||
|
state[0]->iSamp2 = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
if (stereo) {
|
||
|
state[1]->iSamp2 = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += sizeof(Sint16);
|
||
|
}
|
||
|
coeff[0] = MS_ADPCM_state.aCoeff[state[0]->hPredictor];
|
||
|
coeff[1] = MS_ADPCM_state.aCoeff[state[1]->hPredictor];
|
||
|
|
||
|
/* Store the two initial samples we start with */
|
||
|
decoded[0] = state[0]->iSamp2 & 0xFF;
|
||
|
decoded[1] = state[0]->iSamp2 >> 8;
|
||
|
decoded += 2;
|
||
|
if (stereo) {
|
||
|
decoded[0] = state[1]->iSamp2 & 0xFF;
|
||
|
decoded[1] = state[1]->iSamp2 >> 8;
|
||
|
decoded += 2;
|
||
|
}
|
||
|
decoded[0] = state[0]->iSamp1 & 0xFF;
|
||
|
decoded[1] = state[0]->iSamp1 >> 8;
|
||
|
decoded += 2;
|
||
|
if (stereo) {
|
||
|
decoded[0] = state[1]->iSamp1 & 0xFF;
|
||
|
decoded[1] = state[1]->iSamp1 >> 8;
|
||
|
decoded += 2;
|
||
|
}
|
||
|
|
||
|
/* Decode and store the other samples in this block */
|
||
|
samplesleft = (MS_ADPCM_state.wSamplesPerBlock - 2) *
|
||
|
MS_ADPCM_state.wavefmt.channels;
|
||
|
while (samplesleft > 0) {
|
||
|
nybble = (*encoded) >> 4;
|
||
|
new_sample = MS_ADPCM_nibble(state[0], nybble, coeff[0]);
|
||
|
decoded[0] = new_sample & 0xFF;
|
||
|
new_sample >>= 8;
|
||
|
decoded[1] = new_sample & 0xFF;
|
||
|
decoded += 2;
|
||
|
|
||
|
nybble = (*encoded) & 0x0F;
|
||
|
new_sample = MS_ADPCM_nibble(state[1], nybble, coeff[1]);
|
||
|
decoded[0] = new_sample & 0xFF;
|
||
|
new_sample >>= 8;
|
||
|
decoded[1] = new_sample & 0xFF;
|
||
|
decoded += 2;
|
||
|
|
||
|
++encoded;
|
||
|
samplesleft -= 2;
|
||
|
}
|
||
|
encoded_len -= MS_ADPCM_state.wavefmt.blockalign;
|
||
|
}
|
||
|
SDL_free(freeable);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
struct IMA_ADPCM_decodestate
|
||
|
{
|
||
|
Sint32 sample;
|
||
|
Sint8 index;
|
||
|
};
|
||
|
static struct IMA_ADPCM_decoder
|
||
|
{
|
||
|
WaveFMT wavefmt;
|
||
|
Uint16 wSamplesPerBlock;
|
||
|
/* * * */
|
||
|
struct IMA_ADPCM_decodestate state[2];
|
||
|
} IMA_ADPCM_state;
|
||
|
|
||
|
static int
|
||
|
InitIMA_ADPCM(WaveFMT * format)
|
||
|
{
|
||
|
Uint8 *rogue_feel;
|
||
|
|
||
|
/* Set the rogue pointer to the IMA_ADPCM specific data */
|
||
|
IMA_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
|
||
|
IMA_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
|
||
|
IMA_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
|
||
|
IMA_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
|
||
|
IMA_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
|
||
|
IMA_ADPCM_state.wavefmt.bitspersample =
|
||
|
SDL_SwapLE16(format->bitspersample);
|
||
|
rogue_feel = (Uint8 *) format + sizeof(*format);
|
||
|
if (sizeof(*format) == 16) {
|
||
|
/* const Uint16 extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]); */
|
||
|
rogue_feel += sizeof(Uint16);
|
||
|
}
|
||
|
IMA_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static Sint32
|
||
|
IMA_ADPCM_nibble(struct IMA_ADPCM_decodestate *state, Uint8 nybble)
|
||
|
{
|
||
|
const Sint32 max_audioval = ((1 << (16 - 1)) - 1);
|
||
|
const Sint32 min_audioval = -(1 << (16 - 1));
|
||
|
const int index_table[16] = {
|
||
|
-1, -1, -1, -1,
|
||
|
2, 4, 6, 8,
|
||
|
-1, -1, -1, -1,
|
||
|
2, 4, 6, 8
|
||
|
};
|
||
|
const Sint32 step_table[89] = {
|
||
|
7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31,
|
||
|
34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130,
|
||
|
143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408,
|
||
|
449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
|
||
|
1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327,
|
||
|
3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630,
|
||
|
9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350,
|
||
|
22385, 24623, 27086, 29794, 32767
|
||
|
};
|
||
|
Sint32 delta, step;
|
||
|
|
||
|
/* Compute difference and new sample value */
|
||
|
if (state->index > 88) {
|
||
|
state->index = 88;
|
||
|
} else if (state->index < 0) {
|
||
|
state->index = 0;
|
||
|
}
|
||
|
step = step_table[state->index];
|
||
|
delta = step >> 3;
|
||
|
if (nybble & 0x04)
|
||
|
delta += step;
|
||
|
if (nybble & 0x02)
|
||
|
delta += (step >> 1);
|
||
|
if (nybble & 0x01)
|
||
|
delta += (step >> 2);
|
||
|
if (nybble & 0x08)
|
||
|
delta = -delta;
|
||
|
state->sample += delta;
|
||
|
|
||
|
/* Update index value */
|
||
|
state->index += index_table[nybble];
|
||
|
|
||
|
/* Clamp output sample */
|
||
|
if (state->sample > max_audioval) {
|
||
|
state->sample = max_audioval;
|
||
|
} else if (state->sample < min_audioval) {
|
||
|
state->sample = min_audioval;
|
||
|
}
|
||
|
return (state->sample);
|
||
|
}
|
||
|
|
||
|
/* Fill the decode buffer with a channel block of data (8 samples) */
|
||
|
static void
|
||
|
Fill_IMA_ADPCM_block(Uint8 * decoded, Uint8 * encoded,
|
||
|
int channel, int numchannels,
|
||
|
struct IMA_ADPCM_decodestate *state)
|
||
|
{
|
||
|
int i;
|
||
|
Sint8 nybble;
|
||
|
Sint32 new_sample;
|
||
|
|
||
|
decoded += (channel * 2);
|
||
|
for (i = 0; i < 4; ++i) {
|
||
|
nybble = (*encoded) & 0x0F;
|
||
|
new_sample = IMA_ADPCM_nibble(state, nybble);
|
||
|
decoded[0] = new_sample & 0xFF;
|
||
|
new_sample >>= 8;
|
||
|
decoded[1] = new_sample & 0xFF;
|
||
|
decoded += 2 * numchannels;
|
||
|
|
||
|
nybble = (*encoded) >> 4;
|
||
|
new_sample = IMA_ADPCM_nibble(state, nybble);
|
||
|
decoded[0] = new_sample & 0xFF;
|
||
|
new_sample >>= 8;
|
||
|
decoded[1] = new_sample & 0xFF;
|
||
|
decoded += 2 * numchannels;
|
||
|
|
||
|
++encoded;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
IMA_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len)
|
||
|
{
|
||
|
struct IMA_ADPCM_decodestate *state;
|
||
|
Uint8 *freeable, *encoded, *decoded;
|
||
|
Sint32 encoded_len, samplesleft;
|
||
|
unsigned int c, channels;
|
||
|
|
||
|
/* Check to make sure we have enough variables in the state array */
|
||
|
channels = IMA_ADPCM_state.wavefmt.channels;
|
||
|
if (channels > SDL_arraysize(IMA_ADPCM_state.state)) {
|
||
|
SDL_SetError("IMA ADPCM decoder can only handle %d channels",
|
||
|
SDL_arraysize(IMA_ADPCM_state.state));
|
||
|
return (-1);
|
||
|
}
|
||
|
state = IMA_ADPCM_state.state;
|
||
|
|
||
|
/* Allocate the proper sized output buffer */
|
||
|
encoded_len = *audio_len;
|
||
|
encoded = *audio_buf;
|
||
|
freeable = *audio_buf;
|
||
|
*audio_len = (encoded_len / IMA_ADPCM_state.wavefmt.blockalign) *
|
||
|
IMA_ADPCM_state.wSamplesPerBlock *
|
||
|
IMA_ADPCM_state.wavefmt.channels * sizeof(Sint16);
|
||
|
*audio_buf = (Uint8 *) SDL_malloc(*audio_len);
|
||
|
if (*audio_buf == NULL) {
|
||
|
return SDL_OutOfMemory();
|
||
|
}
|
||
|
decoded = *audio_buf;
|
||
|
|
||
|
/* Get ready... Go! */
|
||
|
while (encoded_len >= IMA_ADPCM_state.wavefmt.blockalign) {
|
||
|
/* Grab the initial information for this block */
|
||
|
for (c = 0; c < channels; ++c) {
|
||
|
/* Fill the state information for this block */
|
||
|
state[c].sample = ((encoded[1] << 8) | encoded[0]);
|
||
|
encoded += 2;
|
||
|
if (state[c].sample & 0x8000) {
|
||
|
state[c].sample -= 0x10000;
|
||
|
}
|
||
|
state[c].index = *encoded++;
|
||
|
/* Reserved byte in buffer header, should be 0 */
|
||
|
if (*encoded++ != 0) {
|
||
|
/* Uh oh, corrupt data? Buggy code? */ ;
|
||
|
}
|
||
|
|
||
|
/* Store the initial sample we start with */
|
||
|
decoded[0] = (Uint8) (state[c].sample & 0xFF);
|
||
|
decoded[1] = (Uint8) (state[c].sample >> 8);
|
||
|
decoded += 2;
|
||
|
}
|
||
|
|
||
|
/* Decode and store the other samples in this block */
|
||
|
samplesleft = (IMA_ADPCM_state.wSamplesPerBlock - 1) * channels;
|
||
|
while (samplesleft > 0) {
|
||
|
for (c = 0; c < channels; ++c) {
|
||
|
Fill_IMA_ADPCM_block(decoded, encoded,
|
||
|
c, channels, &state[c]);
|
||
|
encoded += 4;
|
||
|
samplesleft -= 8;
|
||
|
}
|
||
|
decoded += (channels * 8 * 2);
|
||
|
}
|
||
|
encoded_len -= IMA_ADPCM_state.wavefmt.blockalign;
|
||
|
}
|
||
|
SDL_free(freeable);
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
SDL_AudioSpec *
|
||
|
SDL_LoadWAV_RW(SDL_RWops * src, int freesrc,
|
||
|
SDL_AudioSpec * spec, Uint8 ** audio_buf, Uint32 * audio_len)
|
||
|
{
|
||
|
int was_error;
|
||
|
Chunk chunk;
|
||
|
int lenread;
|
||
|
int IEEE_float_encoded, MS_ADPCM_encoded, IMA_ADPCM_encoded;
|
||
|
int samplesize;
|
||
|
|
||
|
/* WAV magic header */
|
||
|
Uint32 RIFFchunk;
|
||
|
Uint32 wavelen = 0;
|
||
|
Uint32 WAVEmagic;
|
||
|
Uint32 headerDiff = 0;
|
||
|
|
||
|
/* FMT chunk */
|
||
|
WaveFMT *format = NULL;
|
||
|
|
||
|
SDL_zero(chunk);
|
||
|
|
||
|
/* Make sure we are passed a valid data source */
|
||
|
was_error = 0;
|
||
|
if (src == NULL) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/* Check the magic header */
|
||
|
RIFFchunk = SDL_ReadLE32(src);
|
||
|
wavelen = SDL_ReadLE32(src);
|
||
|
if (wavelen == WAVE) { /* The RIFFchunk has already been read */
|
||
|
WAVEmagic = wavelen;
|
||
|
wavelen = RIFFchunk;
|
||
|
RIFFchunk = RIFF;
|
||
|
} else {
|
||
|
WAVEmagic = SDL_ReadLE32(src);
|
||
|
}
|
||
|
if ((RIFFchunk != RIFF) || (WAVEmagic != WAVE)) {
|
||
|
SDL_SetError("Unrecognized file type (not WAVE)");
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
headerDiff += sizeof(Uint32); /* for WAVE */
|
||
|
|
||
|
/* Read the audio data format chunk */
|
||
|
chunk.data = NULL;
|
||
|
do {
|
||
|
SDL_free(chunk.data);
|
||
|
chunk.data = NULL;
|
||
|
lenread = ReadChunk(src, &chunk);
|
||
|
if (lenread < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
/* 2 Uint32's for chunk header+len, plus the lenread */
|
||
|
headerDiff += lenread + 2 * sizeof(Uint32);
|
||
|
} while ((chunk.magic == FACT) || (chunk.magic == LIST));
|
||
|
|
||
|
/* Decode the audio data format */
|
||
|
format = (WaveFMT *) chunk.data;
|
||
|
if (chunk.magic != FMT) {
|
||
|
SDL_SetError("Complex WAVE files not supported");
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
IEEE_float_encoded = MS_ADPCM_encoded = IMA_ADPCM_encoded = 0;
|
||
|
switch (SDL_SwapLE16(format->encoding)) {
|
||
|
case PCM_CODE:
|
||
|
/* We can understand this */
|
||
|
break;
|
||
|
case IEEE_FLOAT_CODE:
|
||
|
IEEE_float_encoded = 1;
|
||
|
/* We can understand this */
|
||
|
break;
|
||
|
case MS_ADPCM_CODE:
|
||
|
/* Try to understand this */
|
||
|
if (InitMS_ADPCM(format) < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
MS_ADPCM_encoded = 1;
|
||
|
break;
|
||
|
case IMA_ADPCM_CODE:
|
||
|
/* Try to understand this */
|
||
|
if (InitIMA_ADPCM(format) < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
IMA_ADPCM_encoded = 1;
|
||
|
break;
|
||
|
case MP3_CODE:
|
||
|
SDL_SetError("MPEG Layer 3 data not supported",
|
||
|
SDL_SwapLE16(format->encoding));
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
default:
|
||
|
SDL_SetError("Unknown WAVE data format: 0x%.4x",
|
||
|
SDL_SwapLE16(format->encoding));
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
SDL_memset(spec, 0, (sizeof *spec));
|
||
|
spec->freq = SDL_SwapLE32(format->frequency);
|
||
|
|
||
|
if (IEEE_float_encoded) {
|
||
|
if ((SDL_SwapLE16(format->bitspersample)) != 32) {
|
||
|
was_error = 1;
|
||
|
} else {
|
||
|
spec->format = AUDIO_F32;
|
||
|
}
|
||
|
} else {
|
||
|
switch (SDL_SwapLE16(format->bitspersample)) {
|
||
|
case 4:
|
||
|
if (MS_ADPCM_encoded || IMA_ADPCM_encoded) {
|
||
|
spec->format = AUDIO_S16;
|
||
|
} else {
|
||
|
was_error = 1;
|
||
|
}
|
||
|
break;
|
||
|
case 8:
|
||
|
spec->format = AUDIO_U8;
|
||
|
break;
|
||
|
case 16:
|
||
|
spec->format = AUDIO_S16;
|
||
|
break;
|
||
|
case 32:
|
||
|
spec->format = AUDIO_S32;
|
||
|
break;
|
||
|
default:
|
||
|
was_error = 1;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (was_error) {
|
||
|
SDL_SetError("Unknown %d-bit PCM data format",
|
||
|
SDL_SwapLE16(format->bitspersample));
|
||
|
goto done;
|
||
|
}
|
||
|
spec->channels = (Uint8) SDL_SwapLE16(format->channels);
|
||
|
spec->samples = 4096; /* Good default buffer size */
|
||
|
|
||
|
/* Read the audio data chunk */
|
||
|
*audio_buf = NULL;
|
||
|
do {
|
||
|
SDL_free(*audio_buf);
|
||
|
*audio_buf = NULL;
|
||
|
lenread = ReadChunk(src, &chunk);
|
||
|
if (lenread < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
*audio_len = lenread;
|
||
|
*audio_buf = chunk.data;
|
||
|
if (chunk.magic != DATA)
|
||
|
headerDiff += lenread + 2 * sizeof(Uint32);
|
||
|
} while (chunk.magic != DATA);
|
||
|
headerDiff += 2 * sizeof(Uint32); /* for the data chunk and len */
|
||
|
|
||
|
if (MS_ADPCM_encoded) {
|
||
|
if (MS_ADPCM_decode(audio_buf, audio_len) < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
if (IMA_ADPCM_encoded) {
|
||
|
if (IMA_ADPCM_decode(audio_buf, audio_len) < 0) {
|
||
|
was_error = 1;
|
||
|
goto done;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Don't return a buffer that isn't a multiple of samplesize */
|
||
|
samplesize = ((SDL_AUDIO_BITSIZE(spec->format)) / 8) * spec->channels;
|
||
|
*audio_len &= ~(samplesize - 1);
|
||
|
|
||
|
done:
|
||
|
SDL_free(format);
|
||
|
if (src) {
|
||
|
if (freesrc) {
|
||
|
SDL_RWclose(src);
|
||
|
} else {
|
||
|
/* seek to the end of the file (given by the RIFF chunk) */
|
||
|
SDL_RWseek(src, wavelen - chunk.length - headerDiff, RW_SEEK_CUR);
|
||
|
}
|
||
|
}
|
||
|
if (was_error) {
|
||
|
spec = NULL;
|
||
|
}
|
||
|
return (spec);
|
||
|
}
|
||
|
|
||
|
/* Since the WAV memory is allocated in the shared library, it must also
|
||
|
be freed here. (Necessary under Win32, VC++)
|
||
|
*/
|
||
|
void
|
||
|
SDL_FreeWAV(Uint8 * audio_buf)
|
||
|
{
|
||
|
SDL_free(audio_buf);
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
ReadChunk(SDL_RWops * src, Chunk * chunk)
|
||
|
{
|
||
|
chunk->magic = SDL_ReadLE32(src);
|
||
|
chunk->length = SDL_ReadLE32(src);
|
||
|
chunk->data = (Uint8 *) SDL_malloc(chunk->length);
|
||
|
if (chunk->data == NULL) {
|
||
|
return SDL_OutOfMemory();
|
||
|
}
|
||
|
if (SDL_RWread(src, chunk->data, chunk->length, 1) != 1) {
|
||
|
SDL_free(chunk->data);
|
||
|
chunk->data = NULL;
|
||
|
return SDL_Error(SDL_EFREAD);
|
||
|
}
|
||
|
return (chunk->length);
|
||
|
}
|
||
|
|
||
|
/* vi: set ts=4 sw=4 expandtab: */
|