stdlib: Restored previous qsort() implementation; the licensing is resolved.

Thanks to Gareth McCaughan for changing his code to the zlib license on
our behalf!
Ryan C. Gordon 2016-02-21 13:07:14 -05:00
parent 2436ca200d
commit 32c70cc546
1 changed files with 495 additions and 177 deletions

View File

@ -1,3 +1,28 @@
/*
Simple DirectMedia Layer
Copyright (C) 1997-2016 Sam Lantinga <slouken@libsdl.org>
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#if defined(__clang_analyzer__) && !defined(SDL_DISABLE_ANALYZE_MACROS)
#define SDL_DISABLE_ANALYZE_MACROS 1
#endif
#include "../SDL_internal.h"
#include "SDL_stdinc.h"
@ -9,208 +34,501 @@ SDL_qsort(void *base, size_t nmemb, size_t size, int (*compare) (const void *, c
{
qsort(base, nmemb, size, compare);
}
#else
#ifdef REGTEST
#undef REGTEST
#ifdef assert
#undef assert
#endif
#ifdef TEST
#undef TEST
#define assert SDL_assert
#ifdef malloc
#undef malloc
#endif
#ifndef _PDCLIB_memswp
#define _PDCLIB_memswp( i, j, size ) char tmp; do { tmp = *i; *i++ = *j; *j++ = tmp; } while ( --size );
#define malloc SDL_malloc
#ifdef free
#undef free
#endif
#ifndef _PDCLIB_size_t
#define _PDCLIB_size_t size_t
#define free SDL_free
#ifdef memcpy
#undef memcpy
#endif
#ifdef qsort
#undef qsort
#define memcpy SDL_memcpy
#ifdef memmove
#undef memmove
#endif
#define qsort SDL_qsort
#define inline SDL_INLINE
#define memmove SDL_memmove
#ifdef qsortG
#undef qsortG
#endif
#define qsortG SDL_qsort
/*
This code came from PDCLib, under the public domain. Specifically this:
https://bitbucket.org/pdclib/pdclib/raw/a82b02d0c7d4ed633b97f2a7639d9a10b1c92ec8/functions/stdlib/qsort.c
The _PDCLIB_memswp macro was from
https://bitbucket.org/pdclib/pdclib/src/a82b02d0c7d4ed633b97f2a7639d9a10b1c92ec8/platform/posix/internals/_PDCLIB_config.h?at=default&fileviewer=file-view-default#_PDCLIB_config.h-28
This code came from Gareth McCaughan, under the zlib license.
Specifically this: https://www.mccaughan.org.uk/software/qsort.c-1.14
Everything below this comment until the HAVE_QSORT #endif was from Gareth
(any minor changes will be noted inline).
Thank you to Gareth for relicensing this code under the zlib license for our
benefit!
Everything below this comment until the HAVE_QSORT #endif was from PDCLib (minor changes noted inline).
--ryan.
*/
/* $Id$ */
/* qsort( void *, size_t, size_t, int(*)( const void *, const void * ) )
This file is part of the Public Domain C Library (PDCLib).
Permission is granted to use, modify, and / or redistribute at will.
/* This is a drop-in replacement for the C library's |qsort()| routine.
*
* It is intended for use where you know or suspect that your
* platform's qsort is bad. If that isn't the case, then you
* should probably use the qsort your system gives you in preference
* to mine -- it will likely have been tested and tuned better.
*
* Features:
* - Median-of-three pivoting (and more)
* - Truncation and final polishing by a single insertion sort
* - Early truncation when no swaps needed in pivoting step
* - Explicit recursion, guaranteed not to overflow
* - A few little wrinkles stolen from the GNU |qsort()|.
* (For the avoidance of doubt, no code was stolen, only
* broad ideas.)
* - separate code for non-aligned / aligned / word-size objects
*
* Earlier releases of this code used an idiosyncratic licence
* I wrote myself, because I'm an idiot. The code is now released
* under the "zlib/libpng licence"; you will find the actual
* terms in the next comment. I request (but do not require)
* that if you make any changes beyond the name of the exported
* routine and reasonable tweaks to the TRUNC_* and
* PIVOT_THRESHOLD values, you modify the _ID string so as
* to make it clear that you have changed the code.
*
* If you find problems with this code, or find ways of
* making it significantly faster, please let me know!
* My e-mail address, valid as of early 2016 and for the
* foreseeable future, is
* gareth.mccaughan@pobox.com
* Thanks!
*
* Gareth McCaughan
*/
/* I commented this out. --ryan. #include <stdlib.h> */
#ifndef REGTEST
/* This implementation is taken from Paul Edward's PDPCLIB.
Original code is credited to Raymond Gardner, Englewood CO.
Minor mods are credited to Paul Edwards.
Some reformatting and simplification done by Martin Baute.
All code is still Public Domain.
/* Copyright (c) 1998-2016 Gareth McCaughan
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any
* damages arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented;
* you must not claim that you wrote the original software.
* If you use this software in a product, an acknowledgment
* in the product documentation would be appreciated but
* is not required.
*
* 2. Altered source versions must be plainly marked as such,
* and must not be misrepresented as being the original software.
*
* 3. This notice may not be removed or altered from any source
* distribution.
*/
/* Wrapper for _PDCLIB_memswp protects against multiple argument evaluation. */
static inline void memswp( char * i, char * j, size_t size )
{
_PDCLIB_memswp( i, j, size );
}
/* For small sets, insertion sort is faster than quicksort.
T is the threshold below which insertion sort will be used.
Must be 3 or larger.
/* Revision history since release:
* 1998-03-19 v1.12 First release I have any records of.
* 2007-09-02 v1.13 Fix bug kindly reported by Dan Bodoh
* (premature termination of recursion).
* Add a few clarifying comments.
* Minor improvements to debug output.
* 2016-02-21 v1.14 Replace licence with 2-clause BSD,
* and clarify a couple of things in
* comments. No code changes.
*/
#define T 7
/* Macros for handling the QSort stack */
#define PREPARE_STACK char * stack[STACKSIZE]; char * * stackptr = stack
#define PUSH( base, limit ) stackptr[0] = base; stackptr[1] = limit; stackptr += 2
#define POP( base, limit ) stackptr -= 2; base = stackptr[0]; limit = stackptr[1]
/* TODO: Stack usage is log2( nmemb ) (minus what T shaves off the worst case).
Worst-case nmemb is platform dependent and should probably be
configured through _PDCLIB_config.h.
*/
#define STACKSIZE 64
void qsort( void * base, size_t nmemb, size_t size, int (*compar)( const void *, const void * ) )
{
char * i;
char * j;
_PDCLIB_size_t thresh = T * size;
char * base_ = (char *)base;
char * limit = base_ + nmemb * size;
PREPARE_STACK;
for ( ;; )
{
if ( (size_t)( limit - base_ ) > thresh ) /* QSort for more than T elements. */
{
/* We work from second to last - first will be pivot element. */
i = base_ + size;
j = limit - size;
/* We swap first with middle element, then sort that with second
and last element so that eventually first element is the median
of the three - avoiding pathological pivots.
TODO: Instead of middle element, chose one randomly.
*/
memswp( ( ( ( (size_t)( limit - base_ ) ) / size ) / 2 ) * size + base_, base_, size );
if ( compar( i, j ) > 0 ) memswp( i, j, size );
if ( compar( base_, j ) > 0 ) memswp( base_, j, size );
if ( compar( i, base_ ) > 0 ) memswp( i, base_, size );
/* Now we have the median for pivot element, entering main Quicksort. */
for ( ;; )
{
do
{
/* move i right until *i >= pivot */
i += size;
} while ( compar( i, base_ ) < 0 );
do
{
/* move j left until *j <= pivot */
j -= size;
} while ( compar( j, base_ ) > 0 );
if ( i > j )
{
/* break loop if pointers crossed */
break;
}
/* else swap elements, keep scanning */
memswp( i, j, size );
}
/* move pivot into correct place */
memswp( base_, j, size );
/* larger subfile base / limit to stack, sort smaller */
if ( j - base_ > limit - i )
{
/* left is larger */
PUSH( base_, j );
base_ = i;
}
else
{
/* right is larger */
PUSH( i, limit );
limit = j;
}
}
else /* insertion sort for less than T elements */
{
for ( j = base_, i = j + size; i < limit; j = i, i += size )
{
for ( ; compar( j, j + size ) > 0; j -= size )
{
memswp( j, j + size, size );
if ( j == base_ )
{
break;
}
}
}
if ( stackptr != stack ) /* if any entries on stack */
{
POP( base_, limit );
}
else /* else stack empty, done */
{
break;
}
}
}
}
#endif
#ifdef TEST
#include <_PDCLIB_test.h>
/* BEGIN SDL CHANGE ... commented this out with an #if 0 block. --ryan. */
#if 0
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
static int compare( const void * left, const void * right )
{
return *( (unsigned char *)left ) - *( (unsigned char *)right );
#define DEBUG_QSORT
static char _ID[]="<qsort.c gjm 1.14 2016-02-21>";
#endif
/* END SDL CHANGE ... commented this out with an #if 0 block. --ryan. */
/* How many bytes are there per word? (Must be a power of 2,
* and must in fact equal sizeof(int).)
*/
#define WORD_BYTES sizeof(int)
/* How big does our stack need to be? Answer: one entry per
* bit in a |size_t|.
*/
#define STACK_SIZE (8*sizeof(size_t))
/* Different situations have slightly different requirements,
* and we make life epsilon easier by using different truncation
* points for the three different cases.
* So far, I have tuned TRUNC_words and guessed that the same
* value might work well for the other two cases. Of course
* what works well on my machine might work badly on yours.
*/
#define TRUNC_nonaligned 12
#define TRUNC_aligned 12
#define TRUNC_words 12*WORD_BYTES /* nb different meaning */
/* We use a simple pivoting algorithm for shortish sub-arrays
* and a more complicated one for larger ones. The threshold
* is PIVOT_THRESHOLD.
*/
#define PIVOT_THRESHOLD 40
typedef struct { char * first; char * last; } stack_entry;
#define pushLeft {stack[stacktop].first=ffirst;stack[stacktop++].last=last;}
#define pushRight {stack[stacktop].first=first;stack[stacktop++].last=llast;}
#define doLeft {first=ffirst;llast=last;continue;}
#define doRight {ffirst=first;last=llast;continue;}
#define pop {if (--stacktop<0) break;\
first=ffirst=stack[stacktop].first;\
last=llast=stack[stacktop].last;\
continue;}
/* Some comments on the implementation.
* 1. When we finish partitioning the array into "low"
* and "high", we forget entirely about short subarrays,
* because they'll be done later by insertion sort.
* Doing lots of little insertion sorts might be a win
* on large datasets for locality-of-reference reasons,
* but it makes the code much nastier and increases
* bookkeeping overhead.
* 2. We always save the shorter and get to work on the
* longer. This guarantees that every time we push
* an item onto the stack its size is <= 1/2 of that
* of its parent; so the stack can't need more than
* log_2(max-array-size) entries.
* 3. We choose a pivot by looking at the first, last
* and middle elements. We arrange them into order
* because it's easy to do that in conjunction with
* choosing the pivot, and it makes things a little
* easier in the partitioning step. Anyway, the pivot
* is the middle of these three. It's still possible
* to construct datasets where the algorithm takes
* time of order n^2, but it simply never happens in
* practice.
* 3' Newsflash: On further investigation I find that
* it's easy to construct datasets where median-of-3
* simply isn't good enough. So on large-ish subarrays
* we do a more sophisticated pivoting: we take three
* sets of 3 elements, find their medians, and then
* take the median of those.
* 4. We copy the pivot element to a separate place
* because that way we can always do our comparisons
* directly against a pointer to that separate place,
* and don't have to wonder "did we move the pivot
* element?". This makes the inner loop better.
* 5. It's possible to make the pivoting even more
* reliable by looking at more candidates when n
* is larger. (Taking this to its logical conclusion
* results in a variant of quicksort that doesn't
* have that n^2 worst case.) However, the overhead
* from the extra bookkeeping means that it's just
* not worth while.
* 6. This is pretty clean and portable code. Here are
* all the potential portability pitfalls and problems
* I know of:
* - In one place (the insertion sort) I construct
* a pointer that points just past the end of the
* supplied array, and assume that (a) it won't
* compare equal to any pointer within the array,
* and (b) it will compare equal to a pointer
* obtained by stepping off the end of the array.
* These might fail on some segmented architectures.
* - I assume that there are 8 bits in a |char| when
* computing the size of stack needed. This would
* fail on machines with 9-bit or 16-bit bytes.
* - I assume that if |((int)base&(sizeof(int)-1))==0|
* and |(size&(sizeof(int)-1))==0| then it's safe to
* get at array elements via |int*|s, and that if
* actually |size==sizeof(int)| as well then it's
* safe to treat the elements as |int|s. This might
* fail on systems that convert pointers to integers
* in non-standard ways.
* - I assume that |8*sizeof(size_t)<=INT_MAX|. This
* would be false on a machine with 8-bit |char|s,
* 16-bit |int|s and 4096-bit |size_t|s. :-)
*/
/* The recursion logic is the same in each case.
* We keep chopping up until we reach subarrays of size
* strictly less than Trunc; we leave these unsorted. */
#define Recurse(Trunc) \
{ size_t l=last-ffirst,r=llast-first; \
if (l<Trunc) { \
if (r>=Trunc) doRight \
else pop \
} \
else if (l<=r) { pushLeft; doRight } \
else if (r>=Trunc) { pushRight; doLeft }\
else doLeft \
}
int main( void )
{
char presort[] = { "shreicnyjqpvozxmbt" };
char sorted1[] = { "bcehijmnopqrstvxyz" };
char sorted2[] = { "bticjqnyozpvreshxm" };
char s[19];
strcpy( s, presort );
qsort( s, 18, 1, compare );
TESTCASE( strcmp( s, sorted1 ) == 0 );
strcpy( s, presort );
qsort( s, 9, 2, compare );
TESTCASE( strcmp( s, sorted2 ) == 0 );
strcpy( s, presort );
qsort( s, 1, 1, compare );
TESTCASE( strcmp( s, presort ) == 0 );
#if defined(REGTEST) && (__BSD_VISIBLE || __APPLE__)
puts( "qsort.c: Skipping test #4 for BSD as it goes into endless loop here." );
#else
qsort( s, 100, 0, compare );
TESTCASE( strcmp( s, presort ) == 0 );
#endif
return TEST_RESULTS;
/* and so is the pivoting logic (note: last is inclusive): */
#define Pivot(swapper,sz) \
if (last-first>PIVOT_THRESHOLD*sz) mid=pivot_big(first,mid,last,sz,compare);\
else { \
if (compare(first,mid)<0) { \
if (compare(mid,last)>0) { \
swapper(mid,last); \
if (compare(first,mid)>0) swapper(first,mid);\
} \
} \
else { \
if (compare(mid,last)>0) swapper(first,last)\
else { \
swapper(first,mid); \
if (compare(mid,last)>0) swapper(mid,last);\
} \
} \
first+=sz; last-=sz; \
}
#ifdef DEBUG_QSORT
#include <stdio.h>
#endif
/* and so is the partitioning logic: */
#define Partition(swapper,sz) { \
do { \
while (compare(first,pivot)<0) first+=sz; \
while (compare(pivot,last)<0) last-=sz; \
if (first<last) { \
swapper(first,last); \
first+=sz; last-=sz; } \
else if (first==last) { first+=sz; last-=sz; break; }\
} while (first<=last); \
}
/* and so is the pre-insertion-sort operation of putting
* the smallest element into place as a sentinel.
* Doing this makes the inner loop nicer. I got this
* idea from the GNU implementation of qsort().
* We find the smallest element from the first |nmemb|,
* or the first |limit|, whichever is smaller;
* therefore we must have ensured that the globally smallest
* element is in the first |limit|.
*/
#define PreInsertion(swapper,limit,sz) \
first=base; \
last=first + ((nmemb>limit ? limit : nmemb)-1)*sz;\
while (last!=base) { \
if (compare(first,last)>0) first=last; \
last-=sz; } \
if (first!=base) swapper(first,(char*)base);
/* and so is the insertion sort, in the first two cases: */
#define Insertion(swapper) \
last=((char*)base)+nmemb*size; \
for (first=((char*)base)+size;first!=last;first+=size) { \
char *test; \
/* Find the right place for |first|. \
* My apologies for var reuse. */ \
for (test=first-size;compare(test,first)>0;test-=size) ; \
test+=size; \
if (test!=first) { \
/* Shift everything in [test,first) \
* up by one, and place |first| \
* where |test| is. */ \
memcpy(pivot,first,size); \
memmove(test+size,test,first-test); \
memcpy(test,pivot,size); \
} \
}
#define SWAP_nonaligned(a,b) { \
register char *aa=(a),*bb=(b); \
register size_t sz=size; \
do { register char t=*aa; *aa++=*bb; *bb++=t; } while (--sz); }
#define SWAP_aligned(a,b) { \
register int *aa=(int*)(a),*bb=(int*)(b); \
register size_t sz=size; \
do { register int t=*aa;*aa++=*bb; *bb++=t; } while (sz-=WORD_BYTES); }
#define SWAP_words(a,b) { \
register int t=*((int*)a); *((int*)a)=*((int*)b); *((int*)b)=t; }
/* ---------------------------------------------------------------------- */
static char * pivot_big(char *first, char *mid, char *last, size_t size,
int compare(const void *, const void *)) {
int d=(((last-first)/size)>>3)*size;
#ifdef DEBUG_QSORT
fprintf(stderr, "pivot_big: first=%p last=%p size=%lu n=%lu\n", first, (unsigned long)last, size, (unsigned long)((last-first+1)/size));
#endif
char *m1,*m2,*m3;
{ char *a=first, *b=first+d, *c=first+2*d;
#ifdef DEBUG_QSORT
fprintf(stderr,"< %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
#endif
m1 = compare(a,b)<0 ?
(compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
: (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
}
{ char *a=mid-d, *b=mid, *c=mid+d;
#ifdef DEBUG_QSORT
fprintf(stderr,". %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
#endif
m2 = compare(a,b)<0 ?
(compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
: (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
}
{ char *a=last-2*d, *b=last-d, *c=last;
#ifdef DEBUG_QSORT
fprintf(stderr,"> %d %d %d @ %p %p %p\n",*(int*)a,*(int*)b,*(int*)c, a,b,c);
#endif
m3 = compare(a,b)<0 ?
(compare(b,c)<0 ? b : (compare(a,c)<0 ? c : a))
: (compare(a,c)<0 ? a : (compare(b,c)<0 ? c : b));
}
#ifdef DEBUG_QSORT
fprintf(stderr,"-> %d %d %d @ %p %p %p\n",*(int*)m1,*(int*)m2,*(int*)m3, m1,m2,m3);
#endif
return compare(m1,m2)<0 ?
(compare(m2,m3)<0 ? m2 : (compare(m1,m3)<0 ? m3 : m1))
: (compare(m1,m3)<0 ? m1 : (compare(m2,m3)<0 ? m3 : m2));
}
/* ---------------------------------------------------------------------- */
static void qsort_nonaligned(void *base, size_t nmemb, size_t size,
int (*compare)(const void *, const void *)) {
stack_entry stack[STACK_SIZE];
int stacktop=0;
char *first,*last;
char *pivot=malloc(size);
size_t trunc=TRUNC_nonaligned*size;
assert(pivot!=0);
first=(char*)base; last=first+(nmemb-1)*size;
if (last-first>=trunc) {
char *ffirst=first, *llast=last;
while (1) {
/* Select pivot */
{ char * mid=first+size*((last-first)/size >> 1);
Pivot(SWAP_nonaligned,size);
memcpy(pivot,mid,size);
}
/* Partition. */
Partition(SWAP_nonaligned,size);
/* Prepare to recurse/iterate. */
Recurse(trunc)
}
}
PreInsertion(SWAP_nonaligned,TRUNC_nonaligned-1,size);
Insertion(SWAP_nonaligned);
free(pivot);
}
static void qsort_aligned(void *base, size_t nmemb, size_t size,
int (*compare)(const void *, const void *)) {
stack_entry stack[STACK_SIZE];
int stacktop=0;
char *first,*last;
char *pivot=malloc(size);
size_t trunc=TRUNC_aligned*size;
assert(pivot!=0);
first=(char*)base; last=first+(nmemb-1)*size;
if (last-first>=trunc) {
char *ffirst=first,*llast=last;
while (1) {
/* Select pivot */
{ char * mid=first+size*((last-first)/size >> 1);
Pivot(SWAP_aligned,size);
memcpy(pivot,mid,size);
}
/* Partition. */
Partition(SWAP_aligned,size);
/* Prepare to recurse/iterate. */
Recurse(trunc)
}
}
PreInsertion(SWAP_aligned,TRUNC_aligned-1,size);
Insertion(SWAP_aligned);
free(pivot);
}
static void qsort_words(void *base, size_t nmemb,
int (*compare)(const void *, const void *)) {
stack_entry stack[STACK_SIZE];
int stacktop=0;
char *first,*last;
char *pivot=malloc(WORD_BYTES);
assert(pivot!=0);
first=(char*)base; last=first+(nmemb-1)*WORD_BYTES;
if (last-first>=TRUNC_words) {
char *ffirst=first, *llast=last;
while (1) {
#ifdef DEBUG_QSORT
fprintf(stderr,"Doing %d:%d: ",
(first-(char*)base)/WORD_BYTES,
(last-(char*)base)/WORD_BYTES);
#endif
/* Select pivot */
{ char * mid=first+WORD_BYTES*((last-first) / (2*WORD_BYTES));
Pivot(SWAP_words,WORD_BYTES);
*(int*)pivot=*(int*)mid;
#ifdef DEBUG_QSORT
fprintf(stderr,"pivot = %p = #%lu = %d\n", mid, (unsigned long)(((int*)mid)-((int*)base)), *(int*)mid);
#endif
}
/* Partition. */
Partition(SWAP_words,WORD_BYTES);
#ifdef DEBUG_QSORT
fprintf(stderr, "after partitioning first=#%lu last=#%lu\n", (first-(char*)base)/4lu, (last-(char*)base)/4lu);
#endif
/* Prepare to recurse/iterate. */
Recurse(TRUNC_words)
}
}
PreInsertion(SWAP_words,(TRUNC_words/WORD_BYTES)-1,WORD_BYTES);
/* Now do insertion sort. */
last=((char*)base)+nmemb*WORD_BYTES;
for (first=((char*)base)+WORD_BYTES;first!=last;first+=WORD_BYTES) {
/* Find the right place for |first|. My apologies for var reuse */
int *pl=(int*)(first-WORD_BYTES),*pr=(int*)first;
*(int*)pivot=*(int*)first;
for (;compare(pl,pivot)>0;pr=pl,--pl) {
*pr=*pl; }
if (pr!=(int*)first) *pr=*(int*)pivot;
}
free(pivot);
}
/* ---------------------------------------------------------------------- */
extern void qsortG(void *base, size_t nmemb, size_t size,
int (*compare)(const void *, const void *)) {
if (nmemb<=1) return;
if (((int)base|size)&(WORD_BYTES-1))
qsort_nonaligned(base,nmemb,size,compare);
else if (size!=WORD_BYTES)
qsort_aligned(base,nmemb,size,compare);
else
qsort_words(base,nmemb,compare);
}
#endif /* HAVE_QSORT */
/* vi: set ts=4 sw=4 expandtab: */