Based on a patch by Jochen Schäfer <josch1710@live.de> :
The problem is, that in the initialization code uses the same structure for
desktop_mode and current_mode. See SDL_os2video.c:OS2_VideoInit():
stSDLDisplay.desktop_mode = stSDLDisplayMode;
stSDLDisplay.current_mode = stSDLDisplayMode;
...
stSDLDisplayMode.driverdata = pDisplayData;
Then, if you call GetDisplayModes, current_mode will added to the modes
list, with the same driverdata pointer to desktop_mode.
SDL_AddDisplayMode( display, &display->current_mode );
When VideoQuit gets called, first the modes list gets freed including the
driverdata, the desktop_mode gets freed. See SDL_video.c:SDL_VideoQuit():
for (j = display->num_display_modes; j--;) {
SDL_free(display->display_modes[j].driverdata);
display->display_modes[j].driverdata = NULL;
}
SDL_free(display->display_modes);
display->display_modes = NULL;
SDL_free(display->desktop_mode.driverdata);
display->desktop_mode.driverdata = NULL;
So, the display_modes[j].driverdata gets freed, but desktop_mode->driverdata
points to the same memory, but is not NULL'ed. When desktop_mode->driverdata
gets freed the memory is already freed, and libcx crashes the application on
SDL_Quit.
Based on a patch by Jochen Schäfer <josch1710@live.de> :
On a T420 pressing the ACPI button for volume control, big scancodes
were emitted. This was causing an overflow, because missing guards.
- Do not call IDirectInputDevice8_QueryInterface(device, &IID_IDirectInputDevice8,...) on DIRECTINPUTDEVICE8 device
- Get joystick VendorID and ProductID via IDirectInputDevice8_GetProperty(.., DIPROP_VIDPID, ..) call instead of messing with DIDEVICEINSTANCE.guidProduct
- Normalize HID device interface path to upper case for stable operation of XInput check
- Remove useless RawInput calls in SDL_IsXInputDevice() - just check for "IG_" string in HID device interface path that we already have
There shouldn't be any observable behavior changes.
In a more ideal world, we'd use the appropriate `__attribute__` here, but
it's one thing in a public header that probably shouldn't be there at all, so
this is good enough for now.
Fixes#4307.
We can be in a situation where we receive a win32 hook callback on the same
thread that is currently waiting. In that case, we do still need to trigger
a wakeup when an event is pushed because the hook itself won't necessarily
do that (depending on what we return from the hook).
When possible use native os functions to make a blocking call waiting for
an incoming event. Previous behavior was to continuously poll the event
queue with a small delay between each poll.
The blocking call uses a new optional video driver event,
WaitEventTimeout, if available. It is called only if an window
already shown is available. If present the window is designated
using the variable wakeup_window to receive a wakeup event if
needed.
The WaitEventTimeout function accept a timeout parameter. If
positive the call will wait for an event or return if the timeout
expired without any event. If the timeout is zero it will
implement a polling behavior. If the timeout is negative the
function will block indefinetely waiting for an event.
To let the main thread sees events sent form a different thread
a "wake-up" signal is sent to the main thread if the main thread
is in a blocking state. The wake-up event is sent to the designated
wakeup_window if present.
The wake-up event is sent only if the PushEvent call is coming
from a different thread. Before sending the wake-up event
the ID of the thread making the blocking call is saved using the
variable blocking_thread_id and it is compared to the current
thread's id to decide if the wake-up event should be sent.
Two new optional video device methods are introduced:
WaitEventTimeout
SendWakeupEvent
in addition the mutex
wakeup_lock
which is defined and initialized but only for the drivers supporting the
methods above.
If the methods are not present the system behaves as previously
performing a periodic polling of the events queue.
The blocking call is disabled if a joystick or sensor is detected
and falls back to previous behavior.
This add controller mappings for the Atari vcs (modern) controller as
well as the classic controller, for both bluetooth and USB connectivity.
Signed-off-by: Sjoerd Simons <sjoerd@collabora.com>
At least on bluetooth the guid user the version reported by the
bluetooth device. Which for Atari vcs controllers is the firmware
version. However the mapping will stay the same regardless of firmware
version, so ignore the version entirely to avoid needing a new mapping
entry for each firmware version.
Signed-off-by: Sjoerd Simons <sjoerd@collabora.com>
this variable was added in commit 2067a7db8e and
ultimately tracks if this is a surface's first present. checking if the current
bo is NULL provides the same functionality and cuts down on a redundant piece
of state potentially getting out of sync in the future
SetDisplayMode needs to recreate the EGL surfaces, which then need to be
bound along with the correct context in each rendering thread
commit 3a1d7d9c9a removed this behavior which
has broken using SetDisplayMode when rendering with multiple contexts
the commit message was rather vague, but if the surfaces do need to be
created immediately, this process probably needs to be split such that
surface is created immediately, but the binding is deferred