/** * Math test suite */ #include #include #include "SDL.h" #include "SDL_test.h" /* Range tests parameters */ #define RANGE_TEST_ITERATIONS 10000000 #define RANGE_TEST_STEP SDL_MAX_UINT32 / RANGE_TEST_ITERATIONS /* Define the Euler constant */ #ifndef M_E #define EULER 2.7182818284590450907955982984276488423347473144531250 #else #define EULER M_E #endif /* ================= Test Structs ================== */ /** * Stores a single input and the expected result */ typedef struct { double input; double expected; } d_to_d; /** * Stores a pair of inputs and the expected result */ typedef struct { double x_input, y_input; double expected; } dd_to_d; /* NB: You cannot create an array of these structures containing INFINITY or NAN. On platforms such as OS/2, they are defined as 'extern const double' making them not compile-time constant. */ /* ================= Test Helpers ================== */ typedef double(SDLCALL *d_to_d_func)(double); typedef double(SDLCALL *dd_to_d_func)(double, double); /** * \brief Runs all the cases on a given function with a signature double -> double * * \param func_name, the name of the tested function. * \param func, the function to call. * \param cases, an array of all the cases. * \param cases_size, the size of the cases array. */ static int helper_dtod(const char *func_name, d_to_d_func func, const d_to_d *cases, const size_t cases_size) { Uint32 i; for (i = 0; i < cases_size; i++) { const double result = func(cases[i].input); SDLTest_AssertCheck(result == cases[i].expected, "%s(%f), expected %f, got %f", func_name, cases[i].input, cases[i].expected, result); } return TEST_COMPLETED; } /** * \brief Runs all the cases on a given function with a signature double -> double, * checks the first ten digits of the result (truncated). * * This function is used to test functions with inaccurate results such as trigonometric * functions where angles such as PI/2 can't be accurately represented. * * \note Tests may fail if SDL_trunc is not functional. * * \param func_name, the name of the tested function. * \param func, the function to call. * \param cases, an array of all the cases. * \param cases_size, the size of the cases array. */ static int helper_dtod_approx(const char *func_name, d_to_d_func func, const d_to_d *cases, const size_t cases_size) { Uint32 i; for (i = 0; i < cases_size; i++) { const double result = func(cases[i].input) * 1.0E10; SDLTest_AssertCheck(SDL_trunc(result) == cases[i].expected, "%s(%f), expected %f, got %f", func_name, cases[i].input, cases[i].expected, result); } return TEST_COMPLETED; } /** * \brief Runs all the cases on a given function with a signature (double, double) -> double * * \param func_name, the name of the tested function. * \param func, the function to call. * \param cases, an array of all the cases. * \param cases_size, the size of the cases array. */ static int helper_ddtod(const char *func_name, dd_to_d_func func, const dd_to_d *cases, const size_t cases_size) { Uint32 i; for (i = 0; i < cases_size; i++) { const double result = func(cases[i].x_input, cases[i].y_input); SDLTest_AssertCheck(result == cases[i].expected, "%s(%f,%f), expected %f, got %f", func_name, cases[i].x_input, cases[i].y_input, cases[i].expected, result); } return TEST_COMPLETED; } /** * \brief Runs a range of values on a given function with a signature double -> double * * This function is only meant to test functions that returns the input value if it is * integral: f(x) -> x for x in N. * * \param func_name, the name of the tested function. * \param func, the function to call. */ static int helper_range(const char *func_name, d_to_d_func func) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("%s: Testing a range of %u values with steps of %u", func_name, RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } result = func(test_value); if (result != test_value) { /* Only log failures to save performances */ SDLTest_AssertCheck(SDL_FALSE, "%s(%.1f), expected %.1f, got %.1f", func_name, test_value, test_value, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* ================= Test Case Implementation ================== */ /* SDL_floor tests functions */ /** * \brief Checks positive and negative infinity. */ static int floor_infCases(void *args) { double result; result = SDL_floor(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Floor(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_floor(-INFINITY); SDLTest_AssertCheck(-INFINITY == result, "Floor(%f), expected %f, got %f", -INFINITY, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int floor_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 0.0 }, { -0.0, -0.0 } }; return helper_dtod("Floor", SDL_floor, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN case. */ static int floor_nanCase(void *args) { const double result = SDL_floor(NAN); SDLTest_AssertCheck(isnan(result), "Floor(nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks round values (x.0) for themselves */ static int floor_roundNumbersCases(void *args) { const d_to_d round_cases[] = { { 1.0, 1.0 }, { -1.0, -1.0 }, { 15.0, 15.0 }, { -15.0, -15.0 }, { 125.0, 125.0 }, { -125.0, -125.0 }, { 1024.0, 1024.0 }, { -1024.0, -1024.0 } }; return helper_dtod("Floor", SDL_floor, round_cases, SDL_arraysize(round_cases)); } /** * \brief Checks a set of fractions */ static int floor_fractionCases(void *args) { const d_to_d frac_cases[] = { { 1.0 / 2.0, 0.0 }, { -1.0 / 2.0, -1.0 }, { 4.0 / 3.0, 1.0 }, { -4.0 / 3.0, -2.0 }, { 76.0 / 7.0, 10.0 }, { -76.0 / 7.0, -11.0 }, { 535.0 / 8.0, 66.0 }, { -535.0 / 8.0, -67.0 }, { 19357.0 / 53.0, 365.0 }, { -19357.0 / 53.0, -366.0 } }; return helper_dtod("Floor", SDL_floor, frac_cases, SDL_arraysize(frac_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int floor_rangeTest(void *args) { return helper_range("Floor", SDL_floor); } /* SDL_ceil tests functions */ /** * \brief Checks positive and negative infinity. */ static int ceil_infCases(void *args) { double result; result = SDL_ceil(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Ceil(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_ceil(-INFINITY); SDLTest_AssertCheck(-INFINITY == result, "Ceil(%f), expected %f, got %f", -INFINITY, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int ceil_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 0.0 }, { -0.0, -0.0 } }; return helper_dtod("Ceil", SDL_ceil, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN case. */ static int ceil_nanCase(void *args) { const double result = SDL_ceil(NAN); SDLTest_AssertCheck(isnan(result), "Ceil(nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks round values (x.0) for themselves */ static int ceil_roundNumbersCases(void *args) { const d_to_d round_cases[] = { { 1.0, 1.0 }, { -1.0, -1.0 }, { 15.0, 15.0 }, { -15.0, -15.0 }, { 125.0, 125.0 }, { -125.0, -125.0 }, { 1024.0, 1024.0 }, { -1024.0, -1024.0 } }; return helper_dtod("Ceil", SDL_ceil, round_cases, SDL_arraysize(round_cases)); } /** * \brief Checks a set of fractions */ static int ceil_fractionCases(void *args) { const d_to_d frac_cases[] = { { 1.0 / 2.0, 1.0 }, { -1.0 / 2.0, -0.0 }, { 4.0 / 3.0, 2.0 }, { -4.0 / 3.0, -1.0 }, { 76.0 / 7.0, 11.0 }, { -76.0 / 7.0, -10.0 }, { 535.0 / 8.0, 67.0 }, { -535.0 / 8.0, -66.0 }, { 19357.0 / 53.0, 366.0 }, { -19357.0 / 53.0, -365.0 } }; return helper_dtod("Ceil", SDL_ceil, frac_cases, SDL_arraysize(frac_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int ceil_rangeTest(void *args) { return helper_range("Ceil", SDL_ceil); } /* SDL_trunc tests functions */ /** * \brief Checks positive and negative infinity. */ static int trunc_infCases(void *args) { double result; result = SDL_trunc(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Trunc(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_trunc(-INFINITY); SDLTest_AssertCheck(-INFINITY == result, "Trunc(%f), expected %f, got %f", -INFINITY, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int trunc_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 0.0 }, { -0.0, -0.0 } }; return helper_dtod("Trunc", SDL_trunc, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN case. */ static int trunc_nanCase(void *args) { const double result = SDL_trunc(NAN); SDLTest_AssertCheck(isnan(result), "Trunc(nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks round values (x.0) for themselves */ static int trunc_roundNumbersCases(void *args) { const d_to_d round_cases[] = { { 1.0, 1.0 }, { -1.0, -1.0 }, { 15.0, 15.0 }, { -15.0, -15.0 }, { 125.0, 125.0 }, { -125.0, -125.0 }, { 1024.0, 1024.0 }, { -1024.0, -1024.0 } }; return helper_dtod("Trunc", SDL_trunc, round_cases, SDL_arraysize(round_cases)); } /** * \brief Checks a set of fractions */ static int trunc_fractionCases(void *args) { const d_to_d frac_cases[] = { { 1.0 / 2.0, 0.0 }, { -1.0 / 2.0, -0.0 }, { 4.0 / 3.0, 1.0 }, { -4.0 / 3.0, -1.0 }, { 76.0 / 7.0, 10.0 }, { -76.0 / 7.0, -10.0 }, { 535.0 / 8.0, 66.0 }, { -535.0 / 8.0, -66.0 }, { 19357.0 / 53.0, 365.0 }, { -19357.0 / 53.0, -365.0 } }; return helper_dtod("Trunc", SDL_trunc, frac_cases, SDL_arraysize(frac_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int trunc_rangeTest(void *args) { return helper_range("Trunc", SDL_trunc); } /* SDL_round tests functions */ /** * \brief Checks positive and negative infinity. */ static int round_infCases(void *args) { double result; result = SDL_round(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Round(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_round(-INFINITY); SDLTest_AssertCheck(-INFINITY == result, "Round(%f), expected %f, got %f", -INFINITY, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int round_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 0.0 }, { -0.0, -0.0 } }; return helper_dtod("Round", SDL_round, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN case. */ static int round_nanCase(void *args) { const double result = SDL_round(NAN); SDLTest_AssertCheck(isnan(result), "Round(nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks round values (x.0) for themselves */ static int round_roundNumbersCases(void *args) { const d_to_d round_cases[] = { { 1.0, 1.0 }, { -1.0, -1.0 }, { 15.0, 15.0 }, { -15.0, -15.0 }, { 125.0, 125.0 }, { -125.0, -125.0 }, { 1024.0, 1024.0 }, { -1024.0, -1024.0 } }; return helper_dtod("Round", SDL_round, round_cases, SDL_arraysize(round_cases)); } /** * \brief Checks a set of fractions */ static int round_fractionCases(void *args) { const d_to_d frac_cases[] = { { 1.0 / 2.0, 1.0 }, { -1.0 / 2.0, -1.0 }, { 4.0 / 3.0, 1.0 }, { -4.0 / 3.0, -1.0 }, { 76.0 / 7.0, 11.0 }, { -76.0 / 7.0, -11.0 }, { 535.0 / 8.0, 67.0 }, { -535.0 / 8.0, -67.0 }, { 19357.0 / 53.0, 365.0 }, { -19357.0 / 53.0, -365.0 } }; return helper_dtod("Round", SDL_round, frac_cases, SDL_arraysize(frac_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int round_rangeTest(void *args) { return helper_range("Round", SDL_round); } /* SDL_fabs tests functions */ /** * \brief Checks positive and negative infinity. */ static int fabs_infCases(void *args) { double result; result = SDL_fabs(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Fabs(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_fabs(-INFINITY); SDLTest_AssertCheck(INFINITY == result, "Fabs(%f), expected %f, got %f", -INFINITY, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero */ static int fabs_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 0.0 }, { -0.0, 0.0 } }; return helper_dtod("Fabs", SDL_fabs, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN case. */ static int fabs_nanCase(void *args) { const double result = SDL_fabs(NAN); SDLTest_AssertCheck(isnan(result), "Fabs(nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int fabs_rangeTest(void *args) { return helper_range("Fabs", SDL_fabs); } /* SDL_copysign tests functions */ /** * \brief Checks positive and negative inifnity. */ static int copysign_infCases(void *args) { double result; result = SDL_copysign(INFINITY, -1.0); SDLTest_AssertCheck(-INFINITY == result, "Copysign(%f,%.1f), expected %f, got %f", INFINITY, -1.0, -INFINITY, result); result = SDL_copysign(INFINITY, 1.0); SDLTest_AssertCheck(INFINITY == result, "Copysign(%f,%.1f), expected %f, got %f", INFINITY, 1.0, INFINITY, result); result = SDL_copysign(-INFINITY, -1.0); SDLTest_AssertCheck(-INFINITY == result, "Copysign(%f,%.1f), expected %f, got %f", -INFINITY, -1.0, -INFINITY, result); result = SDL_copysign(-INFINITY, 1.0); SDLTest_AssertCheck(INFINITY == result, "Copysign(%f,%.1f), expected %f, got %f", -INFINITY, 1.0, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int copysign_zeroCases(void *args) { const dd_to_d zero_cases[] = { { 0.0, 1.0, 0.0 }, { 0.0, -1.0, -0.0 }, { -0.0, 1.0, 0.0 }, { -0.0, -1.0, -0.0 } }; return helper_ddtod("Copysign", SDL_copysign, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks the NaN cases. */ static int copysign_nanCases(void *args) { double result; result = SDL_copysign(NAN, 1.0); SDLTest_AssertCheck(isnan(result), "Copysign(nan,1.0), expected nan, got %f", result); result = SDL_copysign(NAN, -1.0); SDLTest_AssertCheck(isnan(result), "Copysign(nan,-1.0), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int copysign_rangeTest(void *args) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("Copysign: Testing a range of %u values with steps of %u", RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } /* Only log failures to save performances */ result = SDL_copysign(test_value, 1.0); if (result != test_value) { SDLTest_AssertCheck(SDL_FALSE, "Copysign(%.1f,%.1f), expected %.1f, got %.1f", test_value, 1.0, test_value, result); return TEST_ABORTED; } result = SDL_copysign(test_value, -1.0); if (result != -test_value) { SDLTest_AssertCheck(SDL_FALSE, "Copysign(%.1f,%.1f), expected %.1f, got %.1f", test_value, -1.0, -test_value, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* SDL_fmod tests functions */ /** * \brief Checks division of positive and negative inifnity. */ static int fmod_divOfInfCases(void *args) { double result; result = SDL_fmod(INFINITY, -1.0); SDLTest_AssertCheck(isnan(result), "Fmod(%f,%.1f), expected %f, got %f", INFINITY, -1.0, NAN, result); result = SDL_fmod(INFINITY, 1.0); SDLTest_AssertCheck(isnan(result), "Fmod(%f,%.1f), expected %f, got %f", INFINITY, 1.0, NAN, result); result = SDL_fmod(-INFINITY, -1.0); SDLTest_AssertCheck(isnan(result), "Fmod(%f,%.1f), expected %f, got %f", -INFINITY, -1.0, NAN, result); result = SDL_fmod(-INFINITY, 1.0); SDLTest_AssertCheck(isnan(result), "Fmod(%f,%.1f), expected %f, got %f", -INFINITY, 1.0, NAN, result); return TEST_COMPLETED; } /** * \brief Checks division by positive and negative inifnity. */ static int fmod_divByInfCases(void *args) { double result; result = SDL_fmod(1.0, INFINITY); SDLTest_AssertCheck(1.0 == result, "Fmod(%.1f,%f), expected %f, got %f", 1.0, INFINITY, 1.0, result); result = SDL_fmod(-1.0, INFINITY); SDLTest_AssertCheck(-1.0 == result, "Fmod(%.1f,%f), expected %f, got %f", -1.0, INFINITY, -1.0, result); result = SDL_fmod(1.0, -INFINITY); SDLTest_AssertCheck(1.0 == result, "Fmod(%.1f,%f), expected %f, got %f", 1.0, -INFINITY, 1.0, result); result = SDL_fmod(-1.0, -INFINITY); SDLTest_AssertCheck(-1.0 == result, "Fmod(%.1f,%f), expected %f, got %f", -1.0, -INFINITY, -1.0, result); return TEST_COMPLETED; } /** * \brief Checks division of positive and negative zero. */ static int fmod_divOfZeroCases(void *args) { const dd_to_d zero_cases[] = { { 0.0, 1.0, 0.0 }, { 0.0, -1.0, 0.0 }, { -0.0, 1.0, -0.0 }, { -0.0, -1.0, -0.0 } }; return helper_ddtod("Fmod", SDL_fmod, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks division by positive and negative zero. */ static int fmod_divByZeroCases(void *args) { double result; result = SDL_fmod(1.0, 0.0); SDLTest_AssertCheck(isnan(result), "Fmod(1.0,0.0), expected nan, got %f", result); result = SDL_fmod(-1.0, 0.0); SDLTest_AssertCheck(isnan(result), "Fmod(-1.0,0.0), expected nan, got %f", result); result = SDL_fmod(1.0, -0.0); SDLTest_AssertCheck(isnan(result), "Fmod(1.0,-0.0), expected nan, got %f", result); result = SDL_fmod(-1.0, -0.0); SDLTest_AssertCheck(isnan(result), "Fmod(-1.0,-0.0), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks the NaN cases. */ static int fmod_nanCases(void *args) { double result; result = SDL_fmod(NAN, 1.0); SDLTest_AssertCheck(isnan(result), "Fmod(nan,1.0), expected nan, got %f", result); result = SDL_fmod(NAN, -1.0); SDLTest_AssertCheck(isnan(result), "Fmod(nan,-1.0), expected nan, got %f", result); result = SDL_fmod(1.0, NAN); SDLTest_AssertCheck(isnan(result), "Fmod(1.0,nan), expected nan, got %f", result); result = SDL_fmod(-1.0, NAN); SDLTest_AssertCheck(isnan(result), "Fmod(-1.0,nan), expected nan, got %f", result); return TEST_COMPLETED; } /** * \brief Checks a set of regular values. */ static int fmod_regularCases(void *args) { const dd_to_d regular_cases[] = { { 3.5, 2.0, 1.5 }, { -6.25, 3.0, -0.25 }, { 7.5, 2.5, 0.0 }, { 2.0 / 3.0, -1.0 / 3.0, 0.0 } }; return helper_ddtod("Fmod", SDL_fmod, regular_cases, SDL_arraysize(regular_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX */ static int fmod_rangeTest(void *args) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("Fmod: Testing a range of %u values with steps of %u", RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } /* Only log failures to save performances */ result = SDL_fmod(test_value, 1.0); if (0.0 != result) { SDLTest_AssertCheck(SDL_FALSE, "Fmod(%.1f,%.1f), expected %.1f, got %.1f", test_value, 1.0, 0.0, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* SDL_exp tests functions */ /** * \brief Checks positive and negative infinity. */ static int exp_infCases(void *args) { double result; result = SDL_exp(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Exp(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_exp(-INFINITY); SDLTest_AssertCheck(0.0 == result, "Exp(%f), expected %f, got %f", -INFINITY, 0.0, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int exp_zeroCases(void *args) { const d_to_d zero_cases[] = { { 0.0, 1.0 }, { -0.0, 1.0 } }; return helper_dtod("Exp", SDL_exp, zero_cases, SDL_arraysize(zero_cases)); } /** * \brief Checks for overflow. * * This test is skipped for double types larger than 64 bits. */ static int exp_overflowCase(void *args) { double result; if (sizeof(double) > 8) { return TEST_SKIPPED; } result = SDL_exp(710.0); SDLTest_AssertCheck(isinf(result), "Exp(%f), expected %f, got %f", 710.0, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks the base case of 1.0. */ static int exp_baseCase(void *args) { const double result = SDL_exp(1.0); SDLTest_AssertCheck(EULER == result, "Exp(%f), expected %f, got %f", 1.0, EULER, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular cases. */ static int exp_regularCases(void *args) { /* Hexadecimal floating constants are not supported on C89 compilers */ const d_to_d regular_cases[] = { { -101.0, 1.36853947117385291381565719268793547578002532127613087E-44 }, { -15.73, 0.00000014741707833928422931856502906683425990763681 }, { -1.0, 0.36787944117144233402427744294982403516769409179688 }, { -0.5, 0.60653065971263342426311737654032185673713684082031 }, { 0.5, 1.64872127070012819416433558217249810695648193359375 }, { 2.25, 9.48773583635852624240669683786109089851379394531250 }, { 34.125, 661148770968660.375 }, { 112.89, 10653788283588960962604279261058893737879589093376.0 }, { 539.483, 1970107755334319939701129934673541628417235942656909222826926175622435588279443011110464355295725187195188154768877850257012251677751742837992843520967922303961718983154427294786640886286983037548604937796221048661733679844353544028160.0 }, }; return helper_dtod("Exp", SDL_exp, regular_cases, SDL_arraysize(regular_cases)); } /* SDL_log tests functions */ /** * \brief Checks limits (zeros and positive infinity). */ static int log_limitCases(void *args) { double result; result = SDL_log(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Log(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_log(0.0); SDLTest_AssertCheck(-INFINITY == result, "Log(%f), expected %f, got %f", 0.0, -INFINITY, result); result = SDL_log(-0.0); SDLTest_AssertCheck(-INFINITY == result, "Log(%f), expected %f, got %f", -0.0, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks some base cases. */ static int log_baseCases(void *args) { double result; result = SDL_log(1.0); SDLTest_AssertCheck(0.0 == result, "Log(%f), expected %f, got %f", 1.0, 0.0, result); result = SDL_log(EULER); SDLTest_AssertCheck(1.0 == result, "Log(%f), expected %f, got %f", EULER, 1.0, result); return TEST_COMPLETED; } /** * \brief Checks the nan cases. */ static int log_nanCases(void *args) { double result; result = SDL_log(NAN); SDLTest_AssertCheck(isnan(result), "Log(%f), expected %f, got %f", NAN, NAN, result); result = SDL_log(-1234.5678); SDLTest_AssertCheck(isnan(result), "Log(%f), expected %f, got %f", -1234.5678, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular cases. */ static int log_regularCases(void *args) { const d_to_d regular_cases[] = { { 5.0, 1.60943791243410028179994242236716672778129577636718750 }, { 10.0, 2.302585092994045901093613792909309267997741699218750 }, { 56.32, 4.031049711849786554296315443934872746467590332031250 }, { 789.123, 6.670922202231861497523368598194792866706848144531250 }, { 2734.876324, 7.91384149408957959792587644187733530998229980468750 } }; return helper_dtod("Log", SDL_log, regular_cases, SDL_arraysize(regular_cases)); } /* SDL_log10 tests functions */ /** * \brief Checks limits (zeros and positive infinity). */ static int log10_limitCases(void *args) { double result; result = SDL_log10(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Log10(%f), expected %f, got %f", INFINITY, INFINITY, result); result = SDL_log10(0.0); SDLTest_AssertCheck(-INFINITY == result, "Log10(%f), expected %f, got %f", 0.0, -INFINITY, result); result = SDL_log10(-0.0); SDLTest_AssertCheck(-INFINITY == result, "Log10(%f), expected %f, got %f", -0.0, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks some base cases. */ static int log10_baseCases(void *args) { const d_to_d base_cases[] = { { 1.0, 0.0 }, { 10.0, 1.0 }, { 100.0, 2.0 }, { 1000.0, 3.0 }, { 10000.0, 4.0 }, { 100000.0, 5.0 }, { 1000000.0, 6.0 }, { 10000000.0, 7.0 }, { 100000000.0, 8.0 }, { 1000000000.0, 9.0 }, }; return helper_dtod("Log10", SDL_log10, base_cases, SDL_arraysize(base_cases)); } /** * \brief Checks the nan cases. */ static int log10_nanCases(void *args) { double result; result = SDL_log10(NAN); SDLTest_AssertCheck(isnan(result), "Log10(%f), expected %f, got %f", NAN, NAN, result); result = SDL_log10(-1234.5678); SDLTest_AssertCheck(isnan(result), "Log10(%f), expected %f, got %f", -1234.5678, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular cases. */ static int log10_regularCases(void *args) { const d_to_d regular_cases[] = { { 5.0, 0.698970004336018857493684208748163655400276184082031250 }, { 12.5, 1.09691001300805646145875016372883692383766174316406250 }, { 56.32, 1.750662646134055755453573510749265551567077636718750 }, { 789.123, 2.8971447016351858927407647570362314581871032714843750 }, { 2734.876324, 3.436937691540090433761633903486654162406921386718750 } }; return helper_dtod("Log10", SDL_log10, regular_cases, SDL_arraysize(regular_cases)); } /* SDL_pow tests functions */ /* Tests with positive and negative infinities as exponents */ /** * \brief Checks the cases where the base is negative one and the exponent is infinity. */ static int pow_baseNOneExpInfCases(void *args) { double result; result = SDL_pow(-1.0, INFINITY); SDLTest_AssertCheck(1.0 == result, "Pow(%f,%f), expected %f, got %f", -1.0, INFINITY, 1.0, result); result = SDL_pow(-1.0, -INFINITY); SDLTest_AssertCheck(1.0 == result, "Pow(%f,%f), expected %f, got %f", -1.0, -INFINITY, 1.0, result); return TEST_COMPLETED; } /** * \brief Checks the case where the base is zero and the exponent is negative infinity. */ static int pow_baseZeroExpNInfCases(void *args) { double result; result = SDL_pow(0.0, -INFINITY); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 0.0, -INFINITY, INFINITY, result); result = SDL_pow(-0.0, -INFINITY); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", -0.0, -INFINITY, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks the remaining cases where the exponent is infinity. */ static int pow_expInfCases(void *args) { double result; result = SDL_pow(0.5, INFINITY); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", 0.5, INFINITY, 0.0, result); result = SDL_pow(1.5, INFINITY); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 1.5, INFINITY, INFINITY, result); result = SDL_pow(0.5, -INFINITY); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 0.5, INFINITY, INFINITY, result); result = SDL_pow(1.5, -INFINITY); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", 1.5, -INFINITY, 0.0, result); return TEST_COMPLETED; } /* Tests with positive and negative infinities as base */ /** * \brief Checks the cases with positive infinity as base. */ static int pow_basePInfCases(void *args) { double result; result = SDL_pow(INFINITY, -3.0); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", INFINITY, -3.0, 0.0, result); result = SDL_pow(INFINITY, 2.0); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", INFINITY, 2.0, INFINITY, result); result = SDL_pow(INFINITY, -2.12345); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", INFINITY, -2.12345, 0.0, result); result = SDL_pow(INFINITY, 3.1345); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", INFINITY, 3.12345, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks the cases with negative infinity as base. */ static int pow_baseNInfCases(void *args) { double result; result = SDL_pow(-INFINITY, -3.0); SDLTest_AssertCheck(-0.0 == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, -3.0, -0.0, result); result = SDL_pow(-INFINITY, -2.0); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, -2.0, 0.0, result); result = SDL_pow(-INFINITY, -5.5); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, -5.5, 0.0, result); result = SDL_pow(-INFINITY, 3.0); SDLTest_AssertCheck(-INFINITY == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, 3.0, -INFINITY, result); result = SDL_pow(-INFINITY, 2.0); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, 2.0, INFINITY, result); result = SDL_pow(-INFINITY, 5.5); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", -INFINITY, 5.5, INFINITY, result); return TEST_COMPLETED; } /* Tests related to nan */ /** * \brief Checks the case where the base is finite and negative and exponent is finite and non-integer. */ static int pow_badOperationCase(void *args) { const double result = SDL_pow(-2.0, 4.2); SDLTest_AssertCheck(isnan(result), "Pow(%f,%f), expected %f, got %f", -2.0, 4.2, NAN, result); return TEST_COMPLETED; } /** * \brief Checks the case where the exponent is nan but the base is 1. */ static int pow_base1ExpNanCase(void *args) { const double result = SDL_pow(1.0, NAN); SDLTest_AssertCheck(1.0 == result, "Pow(%f,%f), expected %f, got %f", 1.0, NAN, 1.0, result); return TEST_COMPLETED; } /** * \brief Checks the cases where the base is nan but the exponent is 0. */ static int pow_baseNanExp0Cases(void *args) { double result; result = SDL_pow(NAN, 0.0); SDLTest_AssertCheck(1.0 == result, "Pow(%f,%f), expected %f, got %f", NAN, 0.0, 1.0, result); result = SDL_pow(NAN, -0.0); SDLTest_AssertCheck(1.0 == result, "Pow(%f,%f), expected %f, got %f", NAN, -0.0, 1.0, result); return TEST_COMPLETED; } /** * \brief Checks the cases where either argument is nan. */ static int pow_nanArgsCases(void *args) { double result; result = SDL_pow(7.8, NAN); SDLTest_AssertCheck(isnan(result), "Pow(%f,%f), expected %f, got %f", 7.8, NAN, NAN, result); result = SDL_pow(NAN, 10.0); SDLTest_AssertCheck(isnan(result), "Pow(%f,%f), expected %f, got %f", NAN, 10.0, NAN, result); result = SDL_pow(NAN, NAN); SDLTest_AssertCheck(isnan(result), "Pow(%f,%f), expected %f, got %f", NAN, NAN, NAN, result); return TEST_COMPLETED; } /* Tests with positive and negative zeros as base */ /** * \brief Checks cases with negative zero as base and an odd exponent. */ static int pow_baseNZeroExpOddCases(void *args) { double result; result = SDL_pow(-0.0, -3.0); SDLTest_AssertCheck(-INFINITY == result, "Pow(%f,%f), expected %f, got %f", -0.0, -3.0, -INFINITY, result); result = SDL_pow(-0.0, 3.0); SDLTest_AssertCheck(-0.0 == result, "Pow(%f,%f), expected %f, got %f", -0.0, 3.0, -0.0, result); return TEST_COMPLETED; } /** * \brief Checks cases with positive zero as base and an odd exponent. */ static int pow_basePZeroExpOddCases(void *args) { double result; result = SDL_pow(0.0, -5.0); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 0.0, -5.0, INFINITY, result); result = SDL_pow(0.0, 5.0); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", 0.0, 5.0, 0.0, result); return TEST_COMPLETED; } /** * \brief Checks cases with negative zero as base and the exponent is finite and even or non-integer. */ static int pow_baseNZeroCases(void *args) { double result; result = SDL_pow(-0.0, -3.5); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", -0.0, -3.5, INFINITY, result); result = SDL_pow(-0.0, -4.0); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", -0.0, -4.0, INFINITY, result); result = SDL_pow(-0.0, 3.5); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", -0.0, 3.5, 0.0, result); result = SDL_pow(-0.0, 4.0); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", -0.0, 4.0, 0.0, result); return TEST_COMPLETED; } /** * \brief Checks cases with positive zero as base and the exponent is finite and even or non-integer. */ static int pow_basePZeroCases(void *args) { double result; result = SDL_pow(0.0, -3.5); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 0.0, -3.5, INFINITY, result); result = SDL_pow(0.0, -4.0); SDLTest_AssertCheck(INFINITY == result, "Pow(%f,%f), expected %f, got %f", 0.0, -4.0, INFINITY, result); result = SDL_pow(0.0, 3.5); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", 0.0, 3.5, 0.0, result); result = SDL_pow(0.0, 4.0); SDLTest_AssertCheck(0.0 == result, "Pow(%f,%f), expected %f, got %f", 0.0, 4.0, 0.0, result); return TEST_COMPLETED; } /* Remaining tests */ /** * \brief Checks a set of regular values. */ static int pow_regularCases(void *args) { const dd_to_d regular_cases[] = { { -391.25, -2.0, 0.00000653267870448815438463212659780943170062528224661946296691894531250 }, { -72.3, 12.0, 20401381050275984310272.0 }, { -5.0, 3.0, -125.0 }, { 3.0, 2.5, 15.58845726811989607085706666111946105957031250 }, { 39.23, -1.5, 0.0040697950366865498147972424192175822099670767784118652343750 }, { 478.972, 12.125, 315326359630449587856007411793920.0 } }; return helper_ddtod("Pow", SDL_pow, regular_cases, SDL_arraysize(regular_cases)); } /** * \brief Checks the powers of two from 1 to 8. */ static int pow_powerOfTwo(void *args) { const dd_to_d power_of_two_cases[] = { { 2.0, 1, 2.0 }, { 2.0, 2, 4.0 }, { 2.0, 3, 8.0 }, { 2.0, 4, 16.0 }, { 2.0, 5, 32.0 }, { 2.0, 6, 64.0 }, { 2.0, 7, 128.0 }, { 2.0, 8, 256.0 }, }; return helper_ddtod("Pow", SDL_pow, power_of_two_cases, SDL_arraysize(power_of_two_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX to the power of 0. */ static int pow_rangeTest(void *args) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("Pow: Testing a range of %u values with steps of %u", RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } /* Only log failures to save performances */ result = SDL_pow(test_value, 0.0); if (result != 1.0) { SDLTest_AssertCheck(SDL_FALSE, "Pow(%.1f,%.1f), expected %.1f, got %.1f", test_value, 1.0, 1.0, result); return TEST_ABORTED; } result = SDL_pow(test_value, -0.0); if (result != 1.0) { SDLTest_AssertCheck(SDL_FALSE, "Pow(%.1f,%.1f), expected %.1f, got %.1f", test_value, -0.0, 1.0, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* SDL_sqrt tests functions */ /** * \brief Checks for positive infinity. */ static int sqrt_infCase(void *args) { const double result = SDL_sqrt(INFINITY); SDLTest_AssertCheck(INFINITY == result, "Sqrt(%f), expected %f, got %f", INFINITY, INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks for the nan case. */ static int sqrt_nanCase(void *args) { const double result = SDL_sqrt(NAN); SDLTest_AssertCheck(isnan(result), "Sqrt(%f), expected %f, got %f", NAN, NAN, result); return TEST_COMPLETED; } /** * \brief Checks for out of domain values (<0). */ static int sqrt_outOfDomainCases(void *args) { double result; result = SDL_sqrt(-1.0); SDLTest_AssertCheck(isnan(result), "Sqrt(%f), expected %f, got %f", -1.0, NAN, result); result = SDL_sqrt(-12345.6789); SDLTest_AssertCheck(isnan(result), "Sqrt(%f), expected %f, got %f", -12345.6789, NAN, result); result = SDL_sqrt(-INFINITY); SDLTest_AssertCheck(isnan(result), "Sqrt(%f), expected %f, got %f", -INFINITY, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of base cases. */ static int sqrt_baseCases(void *args) { const d_to_d base_cases[] = { { -0.0, -0.0 }, { 0.0, 0.0 }, { 1.0, 1.0 } }; return helper_dtod("Sqrt", SDL_sqrt, base_cases, SDL_arraysize(base_cases)); } /** * \brief Checks a set of regular cases. */ static int sqrt_regularCases(void *args) { const d_to_d regular_cases[] = { { 4.0, 2.0 }, { 9.0, 3.0 }, { 27.2, 5.21536192416211896727418206864967942237854003906250 }, { 240.250, 15.5 }, { 1337.0, 36.565010597564445049556525191292166709899902343750 }, { 2887.12782400000014604302123188972473144531250, 53.732 }, { 65600.0156250, 256.125 } }; return helper_dtod("Sqrt", SDL_sqrt, regular_cases, SDL_arraysize(regular_cases)); } /* SDL_scalbn tests functions */ /** * \brief Checks for positive and negative infinity arg. */ static int scalbn_infCases(void *args) { double result; result = SDL_scalbn(INFINITY, 1); SDLTest_AssertCheck(INFINITY == result, "Scalbn(%f,%d), expected %f, got %f", INFINITY, 1, INFINITY, result); result = SDL_scalbn(-INFINITY, 1); SDLTest_AssertCheck(-INFINITY == result, "Scalbn(%f,%d), expected %f, got %f", -INFINITY, 1, -INFINITY, result); return TEST_COMPLETED; } /** * \brief Checks for positive and negative zero arg. */ static int scalbn_baseZeroCases(void *args) { double result; result = SDL_scalbn(0.0, 1); SDLTest_AssertCheck(0.0 == result, "Scalbn(%f,%d), expected %f, got %f", 0.0, 1, 0.0, result); result = SDL_scalbn(-0.0, 1); SDLTest_AssertCheck(-0.0 == result, "Scalbn(%f,%d), expected %f, got %f", -0.0, 1, -0.0, result); return TEST_COMPLETED; } /** * \brief Checks for zero exp. */ static int scalbn_expZeroCase(void *args) { const double result = SDL_scalbn(42.0, 0); SDLTest_AssertCheck(42.0 == result, "Scalbn(%f,%d), expected %f, got %f", 42.0, 0, 42.0, result); return TEST_COMPLETED; } /** * \brief Checks for NAN arg. */ static int scalbn_nanCase(void *args) { const double result = SDL_scalbn(NAN, 2); SDLTest_AssertCheck(isnan(result), "Scalbn(%f,%d), expected %f, got %f", NAN, 2, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular values. * * This test depends on SDL_pow functionning. */ static int scalbn_regularCases(void *args) { double result, expected; result = SDL_scalbn(2.0, 2); expected = 2.0 * SDL_pow(FLT_RADIX, 2); SDLTest_AssertCheck(result == expected, "Scalbn(%f,%d), expected %f, got %f", 2.0, 2, expected, result); result = SDL_scalbn(1.0, 13); expected = 1.0 * SDL_pow(FLT_RADIX, 13); SDLTest_AssertCheck(result == expected, "Scalbn(%f,%d), expected %f, got %f", 1.0, 13, expected, result); result = SDL_scalbn(2.0, -5); expected = 2.0 * SDL_pow(FLT_RADIX, -5); SDLTest_AssertCheck(result == expected, "Scalbn(%f,%d), expected %f, got %f", 2.0, -5, expected, result); result = SDL_scalbn(-1.0, -13); expected = -1.0 * SDL_pow(FLT_RADIX, -13); SDLTest_AssertCheck(result == expected, "Scalbn(%f,%d), expected %f, got %f", -1.0, -13, expected, result); return TEST_COMPLETED; } /* SDL_cos tests functions */ /** * \brief Checks positive and negative infinity. */ static int cos_infCases(void *args) { double result; result = SDL_cos(INFINITY); SDLTest_AssertCheck(isnan(result), "Cos(%f), expected %f, got %f", INFINITY, NAN, result); result = SDL_cos(-INFINITY); SDLTest_AssertCheck(isnan(result), "Cos(%f), expected %f, got %f", -INFINITY, NAN, result); return TEST_COMPLETED; } /** * \brief Checks for nan. */ static int cos_nanCase(void *args) { const double result = SDL_cos(NAN); SDLTest_AssertCheck(isnan(result), "Cos(%f), expected %f, got %f", NAN, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular values. */ static int cos_regularCases(void *args) { const d_to_d regular_cases[] = { { -M_PI, -1.0 }, { -0.0, 1.0 }, { 0.0, 1.0 }, { M_PI, -1.0 } }; return helper_dtod("Cos", SDL_cos, regular_cases, SDL_arraysize(regular_cases)); } /** * \brief Checks cosine precision for the first 10 decimals. */ static int cos_precisionTest(void *args) { const d_to_d precision_cases[] = { { M_PI * 1.0 / 10.0, 9510565162.0 }, { M_PI * 2.0 / 10.0, 8090169943.0 }, { M_PI * 3.0 / 10.0, 5877852522.0 }, { M_PI * 4.0 / 10.0, 3090169943.0 }, { M_PI * 5.0 / 10.0, 0.0 }, { M_PI * 6.0 / 10.0, -3090169943.0 }, { M_PI * 7.0 / 10.0, -5877852522.0 }, { M_PI * 8.0 / 10.0, -8090169943.0 }, { M_PI * 9.0 / 10.0, -9510565162.0 }, { M_PI * -1.0 / 10.0, 9510565162.0 }, { M_PI * -2.0 / 10.0, 8090169943.0 }, { M_PI * -3.0 / 10.0, 5877852522.0 }, { M_PI * -4.0 / 10.0, 3090169943.0 }, { M_PI * -5.0 / 10.0, 0.0 }, { M_PI * -6.0 / 10.0, -3090169943.0 }, { M_PI * -7.0 / 10.0, -5877852522.0 }, { M_PI * -8.0 / 10.0, -8090169943.0 }, { M_PI * -9.0 / 10.0, -9510565162.0 } }; return helper_dtod_approx("Cos", SDL_cos, precision_cases, SDL_arraysize(precision_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX. */ static int cos_rangeTest(void *args) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("Cos: Testing a range of %u values with steps of %u", RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } /* Only log failures to save performances */ result = SDL_cos(test_value); if (result < -1.0 || result > 1.0) { SDLTest_AssertCheck(SDL_FALSE, "Cos(%.1f), expected [%.1f,%.1f], got %.1f", test_value, -1.0, 1.0, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* SDL_sin tests functions */ /** * \brief Checks positive and negative infinity. */ static int sin_infCases(void *args) { double result; result = SDL_sin(INFINITY); SDLTest_AssertCheck(isnan(result), "Sin(%f), expected %f, got %f", INFINITY, NAN, result); result = SDL_sin(-INFINITY); SDLTest_AssertCheck(isnan(result), "Sin(%f), expected %f, got %f", -INFINITY, NAN, result); return TEST_COMPLETED; } /** * \brief Checks for nan. */ static int sin_nanCase(void *args) { const double result = SDL_sin(NAN); SDLTest_AssertCheck(isnan(result), "Sin(%f), expected %f, got %f", NAN, NAN, result); return TEST_COMPLETED; } /** * \brief Checks a set of regular values. */ static int sin_regularCases(void *args) { const d_to_d regular_cases[] = { { -M_PI / 2, -1.0 }, { -0.0, -0.0 }, { 0.0, 0.0 }, { M_PI / 2, 1.0 } }; return helper_dtod("Sin", SDL_sin, regular_cases, SDL_arraysize(regular_cases)); } /** * \brief Checks sine precision for the first 10 decimals. */ static int sin_precisionTest(void *args) { const d_to_d precision_cases[] = { { M_PI * 1.0 / 10.0, 3090169943.0 }, { M_PI * 2.0 / 10.0, 5877852522.0 }, { M_PI * 3.0 / 10.0, 8090169943.0 }, { M_PI * 4.0 / 10.0, 9510565162.0 }, { M_PI * 5.0 / 10.0, 10000000000.0 }, { M_PI * 6.0 / 10.0, 9510565162.0 }, { M_PI * 7.0 / 10.0, 8090169943.0 }, { M_PI * 8.0 / 10.0, 5877852522.0 }, { M_PI * 9.0 / 10.0, 3090169943.0 }, { M_PI * -1.0 / 10.0, -3090169943.0 }, { M_PI * -2.0 / 10.0, -5877852522.0 }, { M_PI * -3.0 / 10.0, -8090169943.0 }, { M_PI * -4.0 / 10.0, -9510565162.0 }, { M_PI * -5.0 / 10.0, -10000000000.0 }, { M_PI * -6.0 / 10.0, -9510565162.0 }, { M_PI * -7.0 / 10.0, -8090169943.0 }, { M_PI * -8.0 / 10.0, -5877852522.0 }, { M_PI * -9.0 / 10.0, -3090169943.0 } }; return helper_dtod_approx("Sin", SDL_sin, precision_cases, SDL_arraysize(precision_cases)); } /** * \brief Checks a range of values between 0 and UINT32_MAX. */ static int sin_rangeTest(void *args) { Uint32 i; double test_value = 0.0; SDLTest_AssertPass("Sin: Testing a range of %u values with steps of %u", RANGE_TEST_ITERATIONS, RANGE_TEST_STEP); for (i = 0; i < RANGE_TEST_ITERATIONS; i++, test_value += RANGE_TEST_STEP) { double result; /* These are tested elsewhere */ if (isnan(test_value) || isinf(test_value)) { continue; } /* Only log failures to save performances */ result = SDL_sin(test_value); if (result < -1.0 || result > 1.0) { SDLTest_AssertCheck(SDL_FALSE, "Sin(%.1f), expected [%.1f,%.1f], got %.1f", test_value, -1.0, 1.0, result); return TEST_ABORTED; } } return TEST_COMPLETED; } /* SDL_tan tests functions */ /** * \brief Checks positive and negative infinity. */ static int tan_infCases(void *args) { double result; result = SDL_tan(INFINITY); SDLTest_AssertCheck(isnan(result), "Tan(%f), expected %f, got %f", INFINITY, NAN, result); result = SDL_tan(-INFINITY); SDLTest_AssertCheck(isnan(result), "Tan(%f), expected %f, got %f", -INFINITY, NAN, result); return TEST_COMPLETED; } /** * \brief Checks for nan. */ static int tan_nanCase(void *args) { const double result = SDL_tan(NAN); SDLTest_AssertCheck(isnan(result), "Tan(%f), expected %f, got %f", NAN, NAN, result); return TEST_COMPLETED; } /** * \brief Checks positive and negative zero. */ static int tan_zeroCases(void *args) { const d_to_d regular_cases[] = { { -0.0, -0.0 }, { 0.0, 0.0 } }; return helper_dtod("Tan", SDL_tan, regular_cases, SDL_arraysize(regular_cases)); } /** * \brief Checks tangent precision for the first 10 decimals. */ static int tan_precisionTest(void *args) { const d_to_d precision_cases[] = { { M_PI * 1.0 / 11.0, 2936264929.0 }, { M_PI * 2.0 / 11.0, 6426609771.0 }, { M_PI * 3.0 / 11.0, 11540615205.0 }, { M_PI * 4.0 / 11.0, 21896945629.0 }, { M_PI * 5.0 / 11.0, 69551527717.0 }, { M_PI * 6.0 / 11.0, -69551527717.0 }, { M_PI * 7.0 / 11.0, -21896945629.0 }, { M_PI * 8.0 / 11.0, -11540615205.0 }, { M_PI * 9.0 / 11.0, -6426609771.0 }, { M_PI * 10.0 / 11.0, -2936264929.0 }, { M_PI * -1.0 / 11.0, -2936264929.0 }, { M_PI * -2.0 / 11.0, -6426609771.0 }, { M_PI * -3.0 / 11.0, -11540615205.0 }, { M_PI * -4.0 / 11.0, -21896945629.0 }, { M_PI * -5.0 / 11.0, -69551527717.0 }, { M_PI * -6.0 / 11.0, 69551527717.0 }, { M_PI * -7.0 / 11.0, 21896945629.0 }, { M_PI * -8.0 / 11.0, 11540615205.0 }, { M_PI * -9.0 / 11.0, 6426609771.0 }, { M_PI * -10.0 / 11.0, 2936264929.0 } }; return helper_dtod_approx("Tan", SDL_tan, precision_cases, SDL_arraysize(precision_cases)); } /* SDL_acos tests functions */ /** * \brief Checks limits of the domain (+/-1). */ static int acos_limitCases(void *args) { double result; result = SDL_acos(1.0); SDLTest_AssertCheck(0.0 == result, "Acos(%f), expected %f, got %f", 1.0, 0.0, result); result = SDL_acos(-1.0); SDLTest_AssertCheck(M_PI == result, "Acos(%f), expected %f, got %f", -1.0, M_PI, result); return TEST_COMPLETED; } /** * \brief Checks values outside the domain (|x| > 1). */ static int acos_outOfDomainCases(void *args) { double result; result = SDL_acos(1.1); SDLTest_AssertCheck(isnan(result), "Acos(%f), expected %f, got %f", 1.1, NAN, result); result = SDL_acos(-1.1); SDLTest_AssertCheck(isnan(result), "Acos(%f), expected %f, got %f", -1.1, NAN, result); return TEST_COMPLETED; } /** * \brief Checks for nan. */ static int acos_nanCase(void *args) { const double result = SDL_acos(NAN); SDLTest_AssertCheck(isnan(result), "Acos(%f), expected %f, got %f", NAN, NAN, result); return TEST_COMPLETED; } /** * \brief Checks arc cosine precision for the first 10 decimals. */ static int acos_precisionTest(void *args) { const d_to_d precision_cases[] = { { 0.1, 14706289056.0 }, { 0.2, 13694384060.0 }, { 0.3, 12661036727.0 }, { 0.4, 11592794807.0 }, { 0.5, 10471975511.0 }, { 0.6, 9272952180.0 }, { 0.7, 7953988301.0 }, { 0.8, 6435011087.0 }, { 0.9, 4510268117.0 }, { -0.1, 16709637479.0 }, { -0.2, 17721542475.0 }, { -0.3, 18754889808.0 }, { -0.4, 19823131728.0 }, { -0.5, 20943951023.0 }, { -0.6, 22142974355.0 }, { -0.7, 23461938234.0 }, { -0.8, 24980915447.0 }, { -0.9, 26905658417.0 }, }; return helper_dtod_approx("Acos", SDL_acos, precision_cases, SDL_arraysize(precision_cases)); } /* ================= Test References ================== */ /* SDL_floor test cases */ static const SDLTest_TestCaseReference floorTestInf = { (SDLTest_TestCaseFp) floor_infCases, "floor_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference floorTestZero = { (SDLTest_TestCaseFp) floor_zeroCases, "floor_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference floorTestNan = { (SDLTest_TestCaseFp) floor_nanCase, "floor_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference floorTestRound = { (SDLTest_TestCaseFp) floor_roundNumbersCases, "floor_roundNumberCases", "Check a set of round numbers", TEST_ENABLED }; static const SDLTest_TestCaseReference floorTestFraction = { (SDLTest_TestCaseFp) floor_fractionCases, "floor_fractionCases", "Check a set of fractions", TEST_ENABLED }; static const SDLTest_TestCaseReference floorTestRange = { (SDLTest_TestCaseFp) floor_rangeTest, "floor_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_ceil test cases */ static const SDLTest_TestCaseReference ceilTestInf = { (SDLTest_TestCaseFp) ceil_infCases, "ceil_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference ceilTestZero = { (SDLTest_TestCaseFp) ceil_zeroCases, "ceil_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference ceilTestNan = { (SDLTest_TestCaseFp) ceil_nanCase, "ceil_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference ceilTestRound = { (SDLTest_TestCaseFp) ceil_roundNumbersCases, "ceil_roundNumberCases", "Check a set of round numbers", TEST_ENABLED }; static const SDLTest_TestCaseReference ceilTestFraction = { (SDLTest_TestCaseFp) ceil_fractionCases, "ceil_fractionCases", "Check a set of fractions", TEST_ENABLED }; static const SDLTest_TestCaseReference ceilTestRange = { (SDLTest_TestCaseFp) ceil_rangeTest, "ceil_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_trunc test cases */ static const SDLTest_TestCaseReference truncTestInf = { (SDLTest_TestCaseFp) trunc_infCases, "trunc_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference truncTestZero = { (SDLTest_TestCaseFp) trunc_zeroCases, "trunc_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference truncTestNan = { (SDLTest_TestCaseFp) trunc_nanCase, "trunc_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference truncTestRound = { (SDLTest_TestCaseFp) trunc_roundNumbersCases, "trunc_roundNumberCases", "Check a set of round numbers", TEST_ENABLED }; static const SDLTest_TestCaseReference truncTestFraction = { (SDLTest_TestCaseFp) trunc_fractionCases, "trunc_fractionCases", "Check a set of fractions", TEST_ENABLED }; static const SDLTest_TestCaseReference truncTestRange = { (SDLTest_TestCaseFp) trunc_rangeTest, "trunc_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_round test cases */ static const SDLTest_TestCaseReference roundTestInf = { (SDLTest_TestCaseFp) round_infCases, "round_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference roundTestZero = { (SDLTest_TestCaseFp) round_zeroCases, "round_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference roundTestNan = { (SDLTest_TestCaseFp) round_nanCase, "round_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference roundTestRound = { (SDLTest_TestCaseFp) round_roundNumbersCases, "round_roundNumberCases", "Check a set of round numbers", TEST_ENABLED }; static const SDLTest_TestCaseReference roundTestFraction = { (SDLTest_TestCaseFp) round_fractionCases, "round_fractionCases", "Check a set of fractions", TEST_ENABLED }; static const SDLTest_TestCaseReference roundTestRange = { (SDLTest_TestCaseFp) round_rangeTest, "round_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_fabs test cases */ static const SDLTest_TestCaseReference fabsTestInf = { (SDLTest_TestCaseFp) fabs_infCases, "fabs_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference fabsTestZero = { (SDLTest_TestCaseFp) fabs_zeroCases, "fabs_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference fabsTestNan = { (SDLTest_TestCaseFp) fabs_nanCase, "fabs_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference fabsTestRange = { (SDLTest_TestCaseFp) fabs_rangeTest, "fabs_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_copysign test cases */ static const SDLTest_TestCaseReference copysignTestInf = { (SDLTest_TestCaseFp) copysign_infCases, "copysign_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference copysignTestZero = { (SDLTest_TestCaseFp) copysign_zeroCases, "copysign_zeroCases", "Check positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference copysignTestNan = { (SDLTest_TestCaseFp) copysign_nanCases, "copysign_nanCases", "Check the NaN special cases", TEST_ENABLED }; static const SDLTest_TestCaseReference copysignTestRange = { (SDLTest_TestCaseFp) copysign_rangeTest, "copysign_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_fmod test cases */ static const SDLTest_TestCaseReference fmodTestDivOfInf = { (SDLTest_TestCaseFp) fmod_divOfInfCases, "fmod_divOfInfCases", "Check division of positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestDivByInf = { (SDLTest_TestCaseFp) fmod_divByInfCases, "fmod_divByInfCases", "Check division by positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestDivOfZero = { (SDLTest_TestCaseFp) fmod_divOfZeroCases, "fmod_divOfZeroCases", "Check division of positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestDivByZero = { (SDLTest_TestCaseFp) fmod_divByZeroCases, "fmod_divByZeroCases", "Check division by positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestNan = { (SDLTest_TestCaseFp) fmod_nanCases, "fmod_nanCases", "Check the NaN special cases", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestRegular = { (SDLTest_TestCaseFp) fmod_regularCases, "fmod_regularCases", "Check a set of regular values", TEST_ENABLED }; static const SDLTest_TestCaseReference fmodTestRange = { (SDLTest_TestCaseFp) fmod_rangeTest, "fmod_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_exp test cases */ static const SDLTest_TestCaseReference expTestInf = { (SDLTest_TestCaseFp) exp_infCases, "exp_infCases", "Check positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference expTestZero = { (SDLTest_TestCaseFp) exp_zeroCases, "exp_zeroCases", "Check for positive and negative zero", TEST_ENABLED }; static const SDLTest_TestCaseReference expTestOverflow = { (SDLTest_TestCaseFp) exp_overflowCase, "exp_overflowCase", "Check for overflow", TEST_ENABLED }; static const SDLTest_TestCaseReference expTestBase = { (SDLTest_TestCaseFp) exp_baseCase, "exp_baseCase", "Check the base case of 1.0", TEST_ENABLED }; static const SDLTest_TestCaseReference expTestRegular = { (SDLTest_TestCaseFp) exp_regularCases, "exp_regularCases", "Check a set of regular values", TEST_ENABLED }; /* SDL_log test cases */ static const SDLTest_TestCaseReference logTestLimit = { (SDLTest_TestCaseFp) log_limitCases, "log_limitCases", "Check for limits", TEST_ENABLED }; static const SDLTest_TestCaseReference logTestNan = { (SDLTest_TestCaseFp) log_nanCases, "log_nanCases", "Check for the nan cases", TEST_ENABLED }; static const SDLTest_TestCaseReference logTestBase = { (SDLTest_TestCaseFp) log_baseCases, "log_baseCases", "Check for base cases", TEST_ENABLED }; static const SDLTest_TestCaseReference logTestRegular = { (SDLTest_TestCaseFp) log_regularCases, "log_regularCases", "Check a set of regular values", TEST_ENABLED }; /* SDL_log10 test cases */ static const SDLTest_TestCaseReference log10TestLimit = { (SDLTest_TestCaseFp) log10_limitCases, "log10_limitCases", "Check for limits", TEST_ENABLED }; static const SDLTest_TestCaseReference log10TestNan = { (SDLTest_TestCaseFp) log10_nanCases, "log10_nanCases", "Check for the nan cases", TEST_ENABLED }; static const SDLTest_TestCaseReference log10TestBase = { (SDLTest_TestCaseFp) log10_baseCases, "log10_baseCases", "Check for base cases", TEST_ENABLED }; static const SDLTest_TestCaseReference log10TestRegular = { (SDLTest_TestCaseFp) log10_regularCases, "log10_regularCases", "Check a set of regular values", TEST_ENABLED }; /* SDL_pow test cases */ static const SDLTest_TestCaseReference powTestExpInf1 = { (SDLTest_TestCaseFp) pow_baseNOneExpInfCases, "pow_baseNOneExpInfCases", "Check for pow(-1, +/-inf)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestExpInf2 = { (SDLTest_TestCaseFp) pow_baseZeroExpNInfCases, "pow_baseZeroExpNInfCases", "Check for pow(+/-0, -inf)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestExpInf3 = { (SDLTest_TestCaseFp) pow_expInfCases, "pow_expInfCases", "Check for pow(x, +/-inf)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestBaseInf1 = { (SDLTest_TestCaseFp) pow_basePInfCases, "pow_basePInfCases", "Check for pow(inf, x)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestBaseInf2 = { (SDLTest_TestCaseFp) pow_baseNInfCases, "pow_baseNInfCases", "Check for pow(-inf, x)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestNan1 = { (SDLTest_TestCaseFp) pow_badOperationCase, "pow_badOperationCase", "Check for negative finite base and non-integer finite exponent", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestNan2 = { (SDLTest_TestCaseFp) pow_base1ExpNanCase, "pow_base1ExpNanCase", "Check for pow(1.0, nan)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestNan3 = { (SDLTest_TestCaseFp) pow_baseNanExp0Cases, "pow_baseNanExp0Cases", "Check for pow(nan, +/-0)", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestNan4 = { (SDLTest_TestCaseFp) pow_nanArgsCases, "pow_nanArgsCases", "Check for pow(x, y) with either x or y being nan", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestZero1 = { (SDLTest_TestCaseFp) pow_baseNZeroExpOddCases, "pow_baseNZeroExpOddCases", "Check for pow(-0.0, y), with y an odd integer.", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestZero2 = { (SDLTest_TestCaseFp) pow_basePZeroExpOddCases, "pow_basePZeroExpOddCases", "Check for pow(0.0, y), with y an odd integer.", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestZero3 = { (SDLTest_TestCaseFp) pow_baseNZeroCases, "pow_baseNZeroCases", "Check for pow(-0.0, y), with y finite and even or non-integer number", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestZero4 = { (SDLTest_TestCaseFp) pow_basePZeroCases, "pow_basePZeroCases", "Check for pow(0.0, y), with y finite and even or non-integer number", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestRegular = { (SDLTest_TestCaseFp) pow_regularCases, "pow_regularCases", "Check a set of regular values", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestPowOf2 = { (SDLTest_TestCaseFp) pow_powerOfTwo, "pow_powerOfTwo", "Check the powers of two from 1 to 8", TEST_ENABLED }; static const SDLTest_TestCaseReference powTestRange = { (SDLTest_TestCaseFp) pow_rangeTest, "pow_rangeTest", "Check a range of positive integer to the power of 0", TEST_ENABLED }; /* SDL_sqrt test cases */ static const SDLTest_TestCaseReference sqrtTestInf = { (SDLTest_TestCaseFp) sqrt_infCase, "sqrt_infCase", "Check positive infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference sqrtTestNan = { (SDLTest_TestCaseFp) sqrt_nanCase, "sqrt_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference sqrtTestDomain = { (SDLTest_TestCaseFp) sqrt_outOfDomainCases, "sqrt_outOfDomainCases", "Check for out of domain values", TEST_ENABLED }; static const SDLTest_TestCaseReference sqrtTestBase = { (SDLTest_TestCaseFp) sqrt_baseCases, "sqrt_baseCases", "Check the base cases", TEST_ENABLED }; static const SDLTest_TestCaseReference sqrtTestRegular = { (SDLTest_TestCaseFp) sqrt_regularCases, "sqrt_regularCases", "Check a set of regular values", TEST_ENABLED }; /* SDL_scalbn test cases */ static const SDLTest_TestCaseReference scalbnTestInf = { (SDLTest_TestCaseFp) scalbn_infCases, "scalbn_infCases", "Check positive and negative infinity arg", TEST_ENABLED }; static const SDLTest_TestCaseReference scalbnTestBaseZero = { (SDLTest_TestCaseFp) scalbn_baseZeroCases, "scalbn_baseZeroCases", "Check for positive and negative zero arg", TEST_ENABLED }; static const SDLTest_TestCaseReference scalbnTestExpZero = { (SDLTest_TestCaseFp) scalbn_expZeroCase, "scalbn_expZeroCase", "Check for zero exp", TEST_ENABLED }; static const SDLTest_TestCaseReference scalbnTestNan = { (SDLTest_TestCaseFp) scalbn_nanCase, "scalbn_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference scalbnTestRegular = { (SDLTest_TestCaseFp) scalbn_regularCases, "scalbn_regularCases", "Check a set of regular cases", TEST_ENABLED }; /* SDL_cos test cases */ static const SDLTest_TestCaseReference cosTestInf = { (SDLTest_TestCaseFp) cos_infCases, "cos_infCases", "Check for positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference cosTestNan = { (SDLTest_TestCaseFp) cos_nanCase, "cos_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference cosTestRegular = { (SDLTest_TestCaseFp) cos_regularCases, "cos_regularCases", "Check a set of regular cases", TEST_ENABLED }; static const SDLTest_TestCaseReference cosTestPrecision = { (SDLTest_TestCaseFp) cos_precisionTest, "cos_precisionTest", "Check cosine precision to the tenth decimal", TEST_ENABLED }; static const SDLTest_TestCaseReference cosTestRange = { (SDLTest_TestCaseFp) cos_rangeTest, "cos_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_sin test cases */ static const SDLTest_TestCaseReference sinTestInf = { (SDLTest_TestCaseFp) sin_infCases, "sin_infCases", "Check for positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference sinTestNan = { (SDLTest_TestCaseFp) sin_nanCase, "sin_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference sinTestRegular = { (SDLTest_TestCaseFp) sin_regularCases, "sin_regularCases", "Check a set of regular cases", TEST_ENABLED }; static const SDLTest_TestCaseReference sinTestPrecision = { (SDLTest_TestCaseFp) sin_precisionTest, "sin_precisionTest", "Check sine precision to the tenth decimal", TEST_ENABLED }; static const SDLTest_TestCaseReference sinTestRange = { (SDLTest_TestCaseFp) sin_rangeTest, "sin_rangeTest", "Check a range of positive integer", TEST_ENABLED }; /* SDL_tan test cases */ static const SDLTest_TestCaseReference tanTestInf = { (SDLTest_TestCaseFp) tan_infCases, "tan_infCases", "Check for positive and negative infinity", TEST_ENABLED }; static const SDLTest_TestCaseReference tanTestNan = { (SDLTest_TestCaseFp) tan_nanCase, "tan_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference tanTestZero = { (SDLTest_TestCaseFp) tan_zeroCases, "tan_zeroCases", "Check a set of regular cases", TEST_ENABLED }; static const SDLTest_TestCaseReference tanTestPrecision = { (SDLTest_TestCaseFp) tan_precisionTest, "tan_precisionTest", "Check tane precision to the tenth decimal", TEST_ENABLED }; /* SDL_acos test cases */ static const SDLTest_TestCaseReference acosTestLimit = { (SDLTest_TestCaseFp) acos_limitCases, "acos_limitCases", "Check the edge of the domain (+/-1)", TEST_ENABLED }; static const SDLTest_TestCaseReference acosTestOutOfDomain = { (SDLTest_TestCaseFp) acos_outOfDomainCases, "acos_outOfDomainCases", "Check a for value outside the domain", TEST_ENABLED }; static const SDLTest_TestCaseReference acosTestNan = { (SDLTest_TestCaseFp) acos_nanCase, "acos_nanCase", "Check the NaN special case", TEST_ENABLED }; static const SDLTest_TestCaseReference acosTestPrecision = { (SDLTest_TestCaseFp) acos_precisionTest, "acos_precisionTest", "Check acos precision to the tenth decimal", TEST_ENABLED }; static const SDLTest_TestCaseReference *mathTests[] = { &floorTestInf, &floorTestZero, &floorTestNan, &floorTestRound, &floorTestFraction, &floorTestRange, &ceilTestInf, &ceilTestZero, &ceilTestNan, &ceilTestRound, &ceilTestFraction, &ceilTestRange, &truncTestInf, &truncTestZero, &truncTestNan, &truncTestRound, &truncTestFraction, &truncTestRange, &roundTestInf, &roundTestZero, &roundTestNan, &roundTestRound, &roundTestFraction, &roundTestRange, &fabsTestInf, &fabsTestZero, &fabsTestNan, &fabsTestRange, ©signTestInf, ©signTestZero, ©signTestNan, ©signTestRange, &fmodTestDivOfInf, &fmodTestDivByInf, &fmodTestDivOfZero, &fmodTestDivByZero, &fmodTestNan, &fmodTestRegular, &fmodTestRange, &expTestInf, &expTestZero, &expTestOverflow, &expTestBase, &expTestRegular, &logTestLimit, &logTestNan, &logTestBase, &logTestRegular, &log10TestLimit, &log10TestNan, &log10TestBase, &log10TestRegular, &powTestExpInf1, &powTestExpInf2, &powTestExpInf3, &powTestBaseInf1, &powTestBaseInf2, &powTestNan1, &powTestNan2, &powTestNan3, &powTestNan4, &powTestZero1, &powTestZero2, &powTestZero3, &powTestZero4, &powTestRegular, &powTestPowOf2, &powTestRange, &sqrtTestInf, &sqrtTestNan, &sqrtTestDomain, &sqrtTestBase, &sqrtTestRegular, &scalbnTestInf, &scalbnTestBaseZero, &scalbnTestExpZero, &scalbnTestNan, &scalbnTestRegular, &cosTestInf, &cosTestNan, &cosTestRegular, &cosTestPrecision, &cosTestRange, &sinTestInf, &sinTestNan, &sinTestRegular, &sinTestPrecision, &sinTestRange, &tanTestInf, &tanTestNan, &tanTestZero, &tanTestPrecision, &acosTestLimit, &acosTestOutOfDomain, &acosTestNan, &acosTestPrecision, NULL }; SDLTest_TestSuiteReference mathTestSuite = { "Math", NULL, mathTests, NULL };