drm/linux-core/drm_compat.c

809 lines
18 KiB
C
Raw Normal View History

2006-08-21 12:38:57 -06:00
/**************************************************************************
*
2006-08-21 12:38:57 -06:00
* This kernel module is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
2006-08-21 12:38:57 -06:00
**************************************************************************/
/*
* This code provides access to unexported mm kernel features. It is necessary
* to use the new DRM memory manager code with kernels that don't support it
* directly.
*
* Authors: Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
* Linux kernel mm subsystem authors.
2006-08-21 12:38:57 -06:00
* (Most code taken from there).
*/
#include "drmP.h"
#if defined(CONFIG_X86) && (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15))
/*
* These have bad performance in the AGP module for the indicated kernel versions.
*/
int drm_map_page_into_agp(struct page *page)
{
int i;
i = change_page_attr(page, 1, PAGE_KERNEL_NOCACHE);
/* Caller's responsibility to call global_flush_tlb() for
* performance reasons */
return i;
}
int drm_unmap_page_from_agp(struct page *page)
{
int i;
i = change_page_attr(page, 1, PAGE_KERNEL);
/* Caller's responsibility to call global_flush_tlb() for
* performance reasons */
return i;
}
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
/*
* The protection map was exported in 2.6.19
*/
2006-08-21 12:38:57 -06:00
pgprot_t vm_get_page_prot(unsigned long vm_flags)
2006-08-21 12:38:57 -06:00
{
#ifdef MODULE
static pgprot_t drm_protection_map[16] = {
__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
};
return drm_protection_map[vm_flags & 0x0F];
2006-08-21 12:38:57 -06:00
#else
extern pgprot_t protection_map[];
return protection_map[vm_flags & 0x0F];
2006-08-21 12:38:57 -06:00
#endif
};
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15))
/*
* vm code for kernels below 2.6.15 in which version a major vm write
* occured. This implement a simple straightforward
* version similar to what's going to be
* in kernel 2.6.19+
* Kernels below 2.6.15 use nopage whereas 2.6.19 and upwards use
* nopfn.
*/
static struct {
spinlock_t lock;
struct page *dummy_page;
atomic_t present;
} drm_np_retry =
{SPIN_LOCK_UNLOCKED, NOPAGE_OOM, ATOMIC_INIT(0)};
static struct page *drm_bo_vm_fault(struct vm_area_struct *vma,
struct fault_data *data);
struct page * get_nopage_retry(void)
{
if (atomic_read(&drm_np_retry.present) == 0) {
struct page *page = alloc_page(GFP_KERNEL);
if (!page)
return NOPAGE_OOM;
spin_lock(&drm_np_retry.lock);
drm_np_retry.dummy_page = page;
atomic_set(&drm_np_retry.present,1);
spin_unlock(&drm_np_retry.lock);
}
get_page(drm_np_retry.dummy_page);
return drm_np_retry.dummy_page;
}
void free_nopage_retry(void)
{
if (atomic_read(&drm_np_retry.present) == 1) {
spin_lock(&drm_np_retry.lock);
__free_page(drm_np_retry.dummy_page);
drm_np_retry.dummy_page = NULL;
atomic_set(&drm_np_retry.present, 0);
spin_unlock(&drm_np_retry.lock);
}
}
struct page *drm_bo_vm_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
struct fault_data data;
if (type)
*type = VM_FAULT_MINOR;
data.address = address;
data.vma = vma;
drm_bo_vm_fault(vma, &data);
switch (data.type) {
case VM_FAULT_OOM:
return NOPAGE_OOM;
case VM_FAULT_SIGBUS:
return NOPAGE_SIGBUS;
default:
break;
}
return NOPAGE_REFAULT;
}
#endif
#if !defined(DRM_FULL_MM_COMPAT) && \
((LINUX_VERSION_CODE < KERNEL_VERSION(2,6,15)) || \
(LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)))
static int drm_pte_is_clear(struct vm_area_struct *vma,
unsigned long addr)
{
struct mm_struct *mm = vma->vm_mm;
int ret = 1;
pte_t *pte;
pmd_t *pmd;
pud_t *pud;
pgd_t *pgd;
spin_lock(&mm->page_table_lock);
pgd = pgd_offset(mm, addr);
if (pgd_none(*pgd))
goto unlock;
pud = pud_offset(pgd, addr);
if (pud_none(*pud))
goto unlock;
pmd = pmd_offset(pud, addr);
if (pmd_none(*pmd))
goto unlock;
pte = pte_offset_map(pmd, addr);
if (!pte)
goto unlock;
ret = pte_none(*pte);
pte_unmap(pte);
unlock:
spin_unlock(&mm->page_table_lock);
return ret;
}
static int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
unsigned long pfn)
{
int ret;
if (!drm_pte_is_clear(vma, addr))
return -EBUSY;
ret = io_remap_pfn_range(vma, addr, pfn, PAGE_SIZE, vma->vm_page_prot);
return ret;
}
static struct page *drm_bo_vm_fault(struct vm_area_struct *vma,
struct fault_data *data)
{
unsigned long address = data->address;
2007-07-15 21:37:02 -06:00
struct drm_buffer_object *bo = (struct drm_buffer_object *) vma->vm_private_data;
unsigned long page_offset;
struct page *page = NULL;
struct drm_ttm *ttm;
2007-07-15 21:52:21 -06:00
struct drm_device *dev;
unsigned long pfn;
int err;
unsigned long bus_base;
unsigned long bus_offset;
unsigned long bus_size;
dev = bo->dev;
2008-04-11 01:36:12 -06:00
drm_bo_read_lock(&dev->bm.bm_lock, 0);
mutex_lock(&bo->mutex);
2008-05-09 09:36:28 -06:00
err = drm_bo_wait(bo, 0, 1, 0, 1);
if (err) {
data->type = (err == -EAGAIN) ?
VM_FAULT_MINOR : VM_FAULT_SIGBUS;
goto out_unlock;
}
/*
* If buffer happens to be in a non-mappable location,
* move it to a mappable.
*/
if (!(bo->mem.flags & DRM_BO_FLAG_MAPPABLE)) {
unsigned long _end = jiffies + 3*DRM_HZ;
uint32_t new_mask = bo->mem.proposed_flags |
DRM_BO_FLAG_MAPPABLE |
DRM_BO_FLAG_FORCE_MAPPABLE;
do {
err = drm_bo_move_buffer(bo, new_mask, 0, 0);
} while((err == -EAGAIN) && !time_after_eq(jiffies, _end));
if (err) {
DRM_ERROR("Timeout moving buffer to mappable location.\n");
data->type = VM_FAULT_SIGBUS;
goto out_unlock;
}
}
if (address > vma->vm_end) {
data->type = VM_FAULT_SIGBUS;
goto out_unlock;
}
dev = bo->dev;
err = drm_bo_pci_offset(dev, &bo->mem, &bus_base, &bus_offset,
&bus_size);
if (err) {
data->type = VM_FAULT_SIGBUS;
goto out_unlock;
}
page_offset = (address - vma->vm_start) >> PAGE_SHIFT;
if (bus_size) {
2007-07-15 21:52:21 -06:00
struct drm_mem_type_manager *man = &dev->bm.man[bo->mem.mem_type];
pfn = ((bus_base + bus_offset) >> PAGE_SHIFT) + page_offset;
vma->vm_page_prot = drm_io_prot(man->drm_bus_maptype, vma);
} else {
ttm = bo->ttm;
drm_ttm_fixup_caching(ttm);
page = drm_ttm_get_page(ttm, page_offset);
if (!page) {
data->type = VM_FAULT_OOM;
goto out_unlock;
}
pfn = page_to_pfn(page);
vma->vm_page_prot = (bo->mem.flags & DRM_BO_FLAG_CACHED) ?
vm_get_page_prot(vma->vm_flags) :
drm_io_prot(_DRM_TTM, vma);
}
err = vm_insert_pfn(vma, address, pfn);
if (!err || err == -EBUSY)
data->type = VM_FAULT_MINOR;
else
data->type = VM_FAULT_OOM;
out_unlock:
mutex_unlock(&bo->mutex);
drm_bo_read_unlock(&dev->bm.bm_lock);
return NULL;
}
#endif
#if (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)) && \
!defined(DRM_FULL_MM_COMPAT)
/**
*/
unsigned long drm_bo_vm_nopfn(struct vm_area_struct * vma,
unsigned long address)
{
struct fault_data data;
data.address = address;
(void) drm_bo_vm_fault(vma, &data);
if (data.type == VM_FAULT_OOM)
return NOPFN_OOM;
else if (data.type == VM_FAULT_SIGBUS)
return NOPFN_SIGBUS;
/*
* pfn already set.
*/
return 0;
}
#endif
#ifdef DRM_ODD_MM_COMPAT
/*
* VM compatibility code for 2.6.15-2.6.18. This code implements a complicated
* workaround for a single BUG statement in do_no_page in these versions. The
* tricky thing is that we need to take the mmap_sem in exclusive mode for _all_
* vmas mapping the ttm, before dev->struct_mutex is taken. The way we do this is to
* check first take the dev->struct_mutex, and then trylock all mmap_sems. If this
* fails for a single mmap_sem, we have to release all sems and the dev->struct_mutex,
* release the cpu and retry. We also need to keep track of all vmas mapping the ttm.
* phew.
*/
typedef struct p_mm_entry {
struct list_head head;
struct mm_struct *mm;
atomic_t refcount;
int locked;
} p_mm_entry_t;
typedef struct vma_entry {
struct list_head head;
struct vm_area_struct *vma;
} vma_entry_t;
struct page *drm_bo_vm_nopage(struct vm_area_struct *vma,
unsigned long address,
int *type)
{
2007-07-15 21:37:02 -06:00
struct drm_buffer_object *bo = (struct drm_buffer_object *) vma->vm_private_data;
unsigned long page_offset;
struct page *page;
struct drm_ttm *ttm;
2007-07-15 21:52:21 -06:00
struct drm_device *dev;
mutex_lock(&bo->mutex);
if (type)
*type = VM_FAULT_MINOR;
if (address > vma->vm_end) {
page = NOPAGE_SIGBUS;
goto out_unlock;
}
dev = bo->dev;
2007-02-06 08:59:45 -07:00
if (drm_mem_reg_is_pci(dev, &bo->mem)) {
DRM_ERROR("Invalid compat nopage.\n");
page = NOPAGE_SIGBUS;
goto out_unlock;
}
ttm = bo->ttm;
2007-02-06 08:59:45 -07:00
drm_ttm_fixup_caching(ttm);
page_offset = (address - vma->vm_start) >> PAGE_SHIFT;
page = drm_ttm_get_page(ttm, page_offset);
if (!page) {
page = NOPAGE_OOM;
goto out_unlock;
}
get_page(page);
out_unlock:
mutex_unlock(&bo->mutex);
return page;
}
int drm_bo_map_bound(struct vm_area_struct *vma)
{
2007-07-15 21:37:02 -06:00
struct drm_buffer_object *bo = (struct drm_buffer_object *)vma->vm_private_data;
int ret = 0;
unsigned long bus_base;
unsigned long bus_offset;
unsigned long bus_size;
ret = drm_bo_pci_offset(bo->dev, &bo->mem, &bus_base,
2007-02-06 08:59:45 -07:00
&bus_offset, &bus_size);
BUG_ON(ret);
if (bus_size) {
2007-07-15 21:52:21 -06:00
struct drm_mem_type_manager *man = &bo->dev->bm.man[bo->mem.mem_type];
unsigned long pfn = (bus_base + bus_offset) >> PAGE_SHIFT;
pgprot_t pgprot = drm_io_prot(man->drm_bus_maptype, vma);
ret = io_remap_pfn_range(vma, vma->vm_start, pfn,
vma->vm_end - vma->vm_start,
pgprot);
}
return ret;
}
2007-07-15 21:37:02 -06:00
int drm_bo_add_vma(struct drm_buffer_object * bo, struct vm_area_struct *vma)
{
p_mm_entry_t *entry, *n_entry;
vma_entry_t *v_entry;
struct mm_struct *mm = vma->vm_mm;
v_entry = drm_ctl_alloc(sizeof(*v_entry), DRM_MEM_BUFOBJ);
if (!v_entry) {
DRM_ERROR("Allocation of vma pointer entry failed\n");
return -ENOMEM;
}
v_entry->vma = vma;
list_add_tail(&v_entry->head, &bo->vma_list);
list_for_each_entry(entry, &bo->p_mm_list, head) {
if (mm == entry->mm) {
atomic_inc(&entry->refcount);
return 0;
} else if ((unsigned long)mm < (unsigned long)entry->mm) ;
}
n_entry = drm_ctl_alloc(sizeof(*n_entry), DRM_MEM_BUFOBJ);
if (!n_entry) {
DRM_ERROR("Allocation of process mm pointer entry failed\n");
return -ENOMEM;
}
INIT_LIST_HEAD(&n_entry->head);
n_entry->mm = mm;
n_entry->locked = 0;
atomic_set(&n_entry->refcount, 0);
list_add_tail(&n_entry->head, &entry->head);
return 0;
}
2007-07-15 21:37:02 -06:00
void drm_bo_delete_vma(struct drm_buffer_object * bo, struct vm_area_struct *vma)
{
p_mm_entry_t *entry, *n;
vma_entry_t *v_entry, *v_n;
int found = 0;
struct mm_struct *mm = vma->vm_mm;
list_for_each_entry_safe(v_entry, v_n, &bo->vma_list, head) {
if (v_entry->vma == vma) {
found = 1;
list_del(&v_entry->head);
drm_ctl_free(v_entry, sizeof(*v_entry), DRM_MEM_BUFOBJ);
break;
}
}
BUG_ON(!found);
list_for_each_entry_safe(entry, n, &bo->p_mm_list, head) {
if (mm == entry->mm) {
if (atomic_add_negative(-1, &entry->refcount)) {
list_del(&entry->head);
BUG_ON(entry->locked);
drm_ctl_free(entry, sizeof(*entry), DRM_MEM_BUFOBJ);
}
return;
}
}
BUG_ON(1);
}
2007-07-15 21:37:02 -06:00
int drm_bo_lock_kmm(struct drm_buffer_object * bo)
{
p_mm_entry_t *entry;
int lock_ok = 1;
list_for_each_entry(entry, &bo->p_mm_list, head) {
BUG_ON(entry->locked);
if (!down_write_trylock(&entry->mm->mmap_sem)) {
lock_ok = 0;
break;
}
entry->locked = 1;
}
if (lock_ok)
return 0;
list_for_each_entry(entry, &bo->p_mm_list, head) {
if (!entry->locked)
break;
up_write(&entry->mm->mmap_sem);
entry->locked = 0;
}
/*
* Possible deadlock. Try again. Our callers should handle this
* and restart.
*/
return -EAGAIN;
}
2007-07-15 21:37:02 -06:00
void drm_bo_unlock_kmm(struct drm_buffer_object * bo)
{
p_mm_entry_t *entry;
list_for_each_entry(entry, &bo->p_mm_list, head) {
BUG_ON(!entry->locked);
up_write(&entry->mm->mmap_sem);
entry->locked = 0;
}
}
int drm_bo_remap_bound(struct drm_buffer_object *bo)
{
vma_entry_t *v_entry;
int ret = 0;
2007-02-06 08:59:45 -07:00
if (drm_mem_reg_is_pci(bo->dev, &bo->mem)) {
list_for_each_entry(v_entry, &bo->vma_list, head) {
ret = drm_bo_map_bound(v_entry->vma);
if (ret)
break;
}
}
return ret;
}
2007-07-15 21:37:02 -06:00
void drm_bo_finish_unmap(struct drm_buffer_object *bo)
{
vma_entry_t *v_entry;
list_for_each_entry(v_entry, &bo->vma_list, head) {
v_entry->vma->vm_flags &= ~VM_PFNMAP;
}
}
#endif
#ifdef DRM_IDR_COMPAT_FN
/* only called when idp->lock is held */
static void __free_layer(struct idr *idp, struct idr_layer *p)
{
p->ary[0] = idp->id_free;
idp->id_free = p;
idp->id_free_cnt++;
}
static void free_layer(struct idr *idp, struct idr_layer *p)
{
unsigned long flags;
/*
* Depends on the return element being zeroed.
*/
spin_lock_irqsave(&idp->lock, flags);
__free_layer(idp, p);
spin_unlock_irqrestore(&idp->lock, flags);
}
/**
* idr_for_each - iterate through all stored pointers
* @idp: idr handle
* @fn: function to be called for each pointer
* @data: data passed back to callback function
*
* Iterate over the pointers registered with the given idr. The
* callback function will be called for each pointer currently
* registered, passing the id, the pointer and the data pointer passed
* to this function. It is not safe to modify the idr tree while in
* the callback, so functions such as idr_get_new and idr_remove are
* not allowed.
*
* We check the return of @fn each time. If it returns anything other
* than 0, we break out and return that value.
*
* The caller must serialize idr_find() vs idr_get_new() and idr_remove().
*/
int idr_for_each(struct idr *idp,
int (*fn)(int id, void *p, void *data), void *data)
{
int n, id, max, error = 0;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer **paa = &pa[0];
n = idp->layers * IDR_BITS;
p = idp->top;
max = 1 << n;
id = 0;
while (id < max) {
while (n > 0 && p) {
n -= IDR_BITS;
*paa++ = p;
p = p->ary[(id >> n) & IDR_MASK];
}
if (p) {
error = fn(id, (void *)p, data);
if (error)
break;
}
id += 1 << n;
while (n < fls(id)) {
n += IDR_BITS;
p = *--paa;
}
}
return error;
}
EXPORT_SYMBOL(idr_for_each);
/**
* idr_remove_all - remove all ids from the given idr tree
* @idp: idr handle
*
* idr_destroy() only frees up unused, cached idp_layers, but this
* function will remove all id mappings and leave all idp_layers
* unused.
*
* A typical clean-up sequence for objects stored in an idr tree, will
* use idr_for_each() to free all objects, if necessay, then
* idr_remove_all() to remove all ids, and idr_destroy() to free
* up the cached idr_layers.
*/
void idr_remove_all(struct idr *idp)
{
int n, id, max, error = 0;
struct idr_layer *p;
struct idr_layer *pa[MAX_LEVEL];
struct idr_layer **paa = &pa[0];
n = idp->layers * IDR_BITS;
p = idp->top;
max = 1 << n;
id = 0;
while (id < max && !error) {
while (n > IDR_BITS && p) {
n -= IDR_BITS;
*paa++ = p;
p = p->ary[(id >> n) & IDR_MASK];
}
id += 1 << n;
while (n < fls(id)) {
if (p) {
memset(p, 0, sizeof *p);
free_layer(idp, p);
}
n += IDR_BITS;
p = *--paa;
}
}
idp->top = NULL;
idp->layers = 0;
}
EXPORT_SYMBOL(idr_remove_all);
#endif /* DRM_IDR_COMPAT_FN */
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,18))
/**
* idr_replace - replace pointer for given id
* @idp: idr handle
* @ptr: pointer you want associated with the id
* @id: lookup key
*
* Replace the pointer registered with an id and return the old value.
* A -ENOENT return indicates that @id was not found.
* A -EINVAL return indicates that @id was not within valid constraints.
*
* The caller must serialize vs idr_find(), idr_get_new(), and idr_remove().
*/
void *idr_replace(struct idr *idp, void *ptr, int id)
{
int n;
struct idr_layer *p, *old_p;
n = idp->layers * IDR_BITS;
p = idp->top;
id &= MAX_ID_MASK;
if (id >= (1 << n))
return ERR_PTR(-EINVAL);
n -= IDR_BITS;
while ((n > 0) && p) {
p = p->ary[(id >> n) & IDR_MASK];
n -= IDR_BITS;
}
n = id & IDR_MASK;
if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
return ERR_PTR(-ENOENT);
old_p = p->ary[n];
p->ary[n] = ptr;
return (void *)old_p;
}
EXPORT_SYMBOL(idr_replace);
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
static __inline__ unsigned long __round_jiffies(unsigned long j, int cpu)
{
int rem;
unsigned long original = j;
j += cpu * 3;
rem = j % HZ;
if (rem < HZ/4) /* round down */
j = j - rem;
else /* round up */
j = j - rem + HZ;
/* now that we have rounded, subtract the extra skew again */
j -= cpu * 3;
if (j <= jiffies) /* rounding ate our timeout entirely; */
return original;
return j;
}
static __inline__ unsigned long __round_jiffies_relative(unsigned long j, int cpu)
{
return __round_jiffies(j + jiffies, cpu) - jiffies;
}
unsigned long round_jiffies_relative(unsigned long j)
{
return __round_jiffies_relative(j, raw_smp_processor_id());
}
EXPORT_SYMBOL(round_jiffies_relative);
#endif
#if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,19))
struct pci_dev * pci_get_bus_and_slot(unsigned int bus, unsigned int devfn)
{
struct pci_dev *dev = NULL;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
if (pci_domain_nr(dev->bus) == 0 &&
(dev->bus->number == bus && dev->devfn == devfn))
return dev;
}
return NULL;
}
EXPORT_SYMBOL(pci_get_bus_and_slot);
#endif
#if defined(DRM_KMAP_ATOMIC_PROT_PFN)
void *kmap_atomic_prot_pfn(unsigned long pfn, enum km_type type,
pgprot_t protection)
{
enum fixed_addresses idx;
unsigned long vaddr;
static pte_t *km_pte;
int level;
static int initialized = 0;
if (unlikely(!initialized)) {
km_pte = lookup_address(__fix_to_virt(FIX_KMAP_BEGIN), &level);
initialized = 1;
}
pagefault_disable();
idx = type + KM_TYPE_NR*smp_processor_id();
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
set_pte(km_pte-idx, pfn_pte(pfn, protection));
return (void*) vaddr;
}
EXPORT_SYMBOL(kmap_atomic_prot_pfn);
2008-03-04 22:28:59 -07:00
#endif