drm/bsd/mga/mga_dma.c

1107 lines
30 KiB
C
Raw Normal View History

2000-06-13 11:38:09 -06:00
/* mga_dma.c -- DMA support for mga g200/g400
* Created: Mon Dec 13 01:50:01 1999 by jhartmann@precisioninsight.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors: Rickard E. (Rik) Faith <faith@valinux.com>
* Jeff Hartmann <jhartmann@valinux.com>
* Keith Whitwell <keithw@valinux.com>
*
*/
#define __NO_VERSION__
#include "drmP.h"
#include "mga_drv.h"
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#define MGA_REG(reg) 2
#define MGA_BASE(reg) ((unsigned long) \
((drm_device_t *)dev)->maplist[MGA_REG(reg)]->handle)
#define MGA_ADDR(reg) (MGA_BASE(reg) + reg)
#define MGA_DEREF(reg) *(__volatile__ int *)MGA_ADDR(reg)
#define MGA_READ(reg) MGA_DEREF(reg)
#define MGA_WRITE(reg,val) do { MGA_DEREF(reg) = val; } while (0)
#define PDEA_pagpxfer_enable 0x2
static int mga_flush_queue(drm_device_t *dev);
static unsigned long mga_alloc_page(drm_device_t *dev)
{
unsigned long address;
DRM_DEBUG("%s\n", __FUNCTION__);
address = (unsigned long) drm_alloc(PAGE_SIZE, DRM_MEM_DMA);
if(address == 0UL) {
return 0;
}
return address;
}
static void mga_free_page(drm_device_t *dev, unsigned long page)
{
DRM_DEBUG("%s\n", __FUNCTION__);
if(page == 0UL) {
return;
}
drm_free((void *) page, PAGE_SIZE, DRM_MEM_DMA);
return;
}
static void mga_delay(void)
{
return;
}
void mga_flush_write_combine(void)
{
int xchangeDummy;
DRM_DEBUG("%s\n", __FUNCTION__);
__asm__ volatile(" push %%eax ; xchg %%eax, %0 ; pop %%eax" : : "m" (xchangeDummy));
__asm__ volatile(" push %%eax ; push %%ebx ; push %%ecx ; push %%edx ;"
" movl $0,%%eax ; cpuid ; pop %%edx ; pop %%ecx ; pop %%ebx ;"
" pop %%eax" : /* no outputs */ : /* no inputs */ );
}
/* These are two age tags that will never be sent to
* the hardware */
#define MGA_BUF_USED 0xffffffff
#define MGA_BUF_FREE 0
static int mga_freelist_init(drm_device_t *dev)
{
drm_device_dma_t *dma = dev->dma;
drm_buf_t *buf;
drm_mga_buf_priv_t *buf_priv;
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_mga_freelist_t *item;
int i;
DRM_DEBUG("%s\n", __FUNCTION__);
dev_priv->head = drm_alloc(sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
if(dev_priv->head == NULL) return ENOMEM;
memset(dev_priv->head, 0, sizeof(drm_mga_freelist_t));
dev_priv->head->age = MGA_BUF_USED;
for (i = 0; i < dma->buf_count; i++) {
buf = dma->buflist[ i ];
buf_priv = buf->dev_private;
item = drm_alloc(sizeof(drm_mga_freelist_t),
DRM_MEM_DRIVER);
if(item == NULL) return ENOMEM;
memset(item, 0, sizeof(drm_mga_freelist_t));
item->age = MGA_BUF_FREE;
item->prev = dev_priv->head;
item->next = dev_priv->head->next;
if(dev_priv->head->next != NULL)
dev_priv->head->next->prev = item;
if(item->next == NULL) dev_priv->tail = item;
item->buf = buf;
buf_priv->my_freelist = item;
buf_priv->discard = 0;
buf_priv->dispatched = 0;
dev_priv->head->next = item;
}
return 0;
}
static void mga_freelist_cleanup(drm_device_t *dev)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_mga_freelist_t *item;
drm_mga_freelist_t *prev;
DRM_DEBUG("%s\n", __FUNCTION__);
item = dev_priv->head;
while(item) {
prev = item;
item = item->next;
drm_free(prev, sizeof(drm_mga_freelist_t), DRM_MEM_DRIVER);
}
dev_priv->head = dev_priv->tail = NULL;
}
/* Frees dispatch lock */
static __inline void mga_dma_quiescent(drm_device_t *dev)
{
drm_device_dma_t *dma = dev->dma;
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
unsigned long end;
int i;
DRM_DEBUG("%s\n", __FUNCTION__);
end = ticks + (hz*3);
while(1) {
if(!test_and_set_bit(MGA_IN_DISPATCH,
&dev_priv->dispatch_status)) {
break;
}
if((signed)(end - ticks) <= 0) {
DRM_ERROR("irqs: %d wanted %d\n",
atomic_read(&dev->total_irq),
atomic_read(&dma->total_lost));
DRM_ERROR("lockup\n");
goto out_nolock;
}
for (i = 0 ; i < 2000 ; i++) mga_delay();
}
end = ticks + (hz*3);
DRM_DEBUG("quiescent status : %x\n", MGA_READ(MGAREG_STATUS));
while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) {
if((signed)(end - ticks) <= 0) {
DRM_ERROR("irqs: %d wanted %d\n",
atomic_read(&dev->total_irq),
atomic_read(&dma->total_lost));
DRM_ERROR("lockup\n");
goto out_status;
}
for (i = 0 ; i < 2000 ; i++) mga_delay();
}
sarea_priv->dirty |= MGA_DMA_FLUSH;
out_status:
clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
out_nolock:
}
static void mga_reset_freelist(drm_device_t *dev)
{
drm_device_dma_t *dma = dev->dma;
drm_buf_t *buf;
drm_mga_buf_priv_t *buf_priv;
int i;
for (i = 0; i < dma->buf_count; i++) {
buf = dma->buflist[ i ];
buf_priv = buf->dev_private;
buf_priv->my_freelist->age = MGA_BUF_FREE;
}
}
/* Least recently used :
* These operations are not atomic b/c they are protected by the
* hardware lock */
drm_buf_t *mga_freelist_get(drm_device_t *dev)
{
drm_mga_private_t *dev_priv =
(drm_mga_private_t *) dev->dev_private;
drm_mga_freelist_t *prev;
drm_mga_freelist_t *next;
static int failed = 0;
int ret, s;
DRM_DEBUG("%s : tail->age : %d last_prim_age : %d\n", __FUNCTION__,
dev_priv->tail->age, dev_priv->last_prim_age);
if(failed >= 1000 && dev_priv->tail->age >= dev_priv->last_prim_age) {
DRM_DEBUG("I'm waiting on the freelist!!! %d\n",
dev_priv->last_prim_age);
s = splsofttq();
set_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status);
for (;;) {
mga_dma_schedule(dev, 0);
if(!test_bit(MGA_IN_GETBUF,
&dev_priv->dispatch_status))
break;
atomic_inc(&dev->total_sleeps);
ret = tsleep(&dev_priv->buf_queue, PZERO|PCATCH,
"mgafg", 0);
if (ret) {
clear_bit(MGA_IN_GETBUF,
&dev_priv->dispatch_status);
splx(s);
goto failed_getbuf;
}
}
splx(s);
}
if(dev_priv->tail->age < dev_priv->last_prim_age) {
prev = dev_priv->tail->prev;
next = dev_priv->tail;
prev->next = NULL;
next->prev = next->next = NULL;
dev_priv->tail = prev;
next->age = MGA_BUF_USED;
failed = 0;
return next->buf;
}
failed_getbuf:
failed++;
return NULL;
}
int mga_freelist_put(drm_device_t *dev, drm_buf_t *buf)
{
drm_mga_private_t *dev_priv =
(drm_mga_private_t *) dev->dev_private;
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
drm_mga_freelist_t *prev;
drm_mga_freelist_t *head;
drm_mga_freelist_t *next;
DRM_DEBUG("%s\n", __FUNCTION__);
if(buf_priv->my_freelist->age == MGA_BUF_USED) {
/* Discarded buffer, put it on the tail */
next = buf_priv->my_freelist;
next->age = MGA_BUF_FREE;
prev = dev_priv->tail;
prev->next = next;
next->prev = prev;
next->next = NULL;
dev_priv->tail = next;
DRM_DEBUG("Discarded\n");
} else {
/* Normally aged buffer, put it on the head + 1,
* as the real head is a sentinal element
*/
next = buf_priv->my_freelist;
head = dev_priv->head;
prev = head->next;
head->next = next;
prev->prev = next;
next->prev = head;
next->next = prev;
}
return 0;
}
static int mga_init_primary_bufs(drm_device_t *dev, drm_mga_init_t *init)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_prim_buf_t *prim_buffer;
int i, temp, size_of_buf;
int offset = init->reserved_map_agpstart;
DRM_DEBUG("%s\n", __FUNCTION__);
dev_priv->primary_size = ((init->primary_size + PAGE_SIZE - 1) /
PAGE_SIZE) * PAGE_SIZE;
size_of_buf = dev_priv->primary_size / MGA_NUM_PRIM_BUFS;
dev_priv->warp_ucode_size = init->warp_ucode_size;
dev_priv->prim_bufs = drm_alloc(sizeof(drm_mga_prim_buf_t *) *
(MGA_NUM_PRIM_BUFS + 1),
DRM_MEM_DRIVER);
if(dev_priv->prim_bufs == NULL) {
DRM_ERROR("Unable to allocate memory for prim_buf\n");
return ENOMEM;
}
memset(dev_priv->prim_bufs,
0, sizeof(drm_mga_prim_buf_t *) * (MGA_NUM_PRIM_BUFS + 1));
temp = init->warp_ucode_size + dev_priv->primary_size;
temp = ((temp + PAGE_SIZE - 1) / PAGE_SIZE) * PAGE_SIZE;
dev_priv->ioremap = drm_ioremap(dev->agp->base + offset,
temp);
if(dev_priv->ioremap == NULL) {
DRM_DEBUG("Ioremap failed\n");
return ENOMEM;
}
dev_priv->wait_queue = 0;
for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) {
prim_buffer = drm_alloc(sizeof(drm_mga_prim_buf_t),
DRM_MEM_DRIVER);
if(prim_buffer == NULL) return ENOMEM;
memset(prim_buffer, 0, sizeof(drm_mga_prim_buf_t));
prim_buffer->phys_head = offset + dev->agp->base;
prim_buffer->current_dma_ptr =
prim_buffer->head =
(u_int32_t *) (dev_priv->ioremap +
offset -
init->reserved_map_agpstart);
prim_buffer->num_dwords = 0;
prim_buffer->max_dwords = size_of_buf / sizeof(u_int32_t);
prim_buffer->max_dwords -= 5; /* Leave room for the softrap */
prim_buffer->sec_used = 0;
prim_buffer->idx = i;
prim_buffer->prim_age = i + 1;
offset = offset + size_of_buf;
dev_priv->prim_bufs[i] = prim_buffer;
}
dev_priv->current_prim_idx = 0;
dev_priv->next_prim =
dev_priv->last_prim =
dev_priv->current_prim =
dev_priv->prim_bufs[0];
dev_priv->next_prim_age = 2;
dev_priv->last_prim_age = 1;
set_bit(MGA_BUF_IN_USE, &dev_priv->current_prim->buffer_status);
return 0;
}
static void mga_fire_primary(drm_device_t *dev, drm_mga_prim_buf_t *prim)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_device_dma_t *dma = dev->dma;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
int use_agp = PDEA_pagpxfer_enable;
unsigned long end;
int i;
int next_idx;
PRIMLOCALS;
DRM_DEBUG("%s\n", __FUNCTION__);
dev_priv->last_prim = prim;
/* We never check for overflow, b/c there is always room */
PRIMPTR(prim);
if(num_dwords <= 0) {
DRM_DEBUG("num_dwords == 0 when dispatched\n");
goto out_prim_wait;
}
PRIMOUTREG( MGAREG_DMAPAD, 0);
PRIMOUTREG( MGAREG_DMAPAD, 0);
PRIMOUTREG( MGAREG_DMAPAD, 0);
PRIMOUTREG( MGAREG_SOFTRAP, 0);
PRIMFINISH(prim);
end = ticks + (hz*3);
if(sarea_priv->dirty & MGA_DMA_FLUSH) {
DRM_DEBUG("Dma top flush\n");
while((MGA_READ(MGAREG_STATUS) & 0x00030001) != 0x00020000) {
if((signed)(end - ticks) <= 0) {
DRM_ERROR("irqs: %d wanted %d\n",
atomic_read(&dev->total_irq),
atomic_read(&dma->total_lost));
DRM_ERROR("lockup in fire primary "
"(Dma Top Flush)\n");
goto out_prim_wait;
}
for (i = 0 ; i < 4096 ; i++) mga_delay();
}
sarea_priv->dirty &= ~(MGA_DMA_FLUSH);
} else {
DRM_DEBUG("Status wait\n");
while((MGA_READ(MGAREG_STATUS) & 0x00020001) != 0x00020000) {
if((signed)(end - ticks) <= 0) {
DRM_ERROR("irqs: %d wanted %d\n",
atomic_read(&dev->total_irq),
atomic_read(&dma->total_lost));
DRM_ERROR("lockup in fire primary "
"(Status Wait)\n");
goto out_prim_wait;
}
for (i = 0 ; i < 4096 ; i++) mga_delay();
}
}
mga_flush_write_combine();
atomic_inc(&dev_priv->pending_bufs);
MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL);
MGA_WRITE(MGAREG_PRIMEND, (phys_head + num_dwords * 4) | use_agp);
prim->num_dwords = 0;
sarea_priv->last_enqueue = prim->prim_age;
next_idx = prim->idx + 1;
if(next_idx >= MGA_NUM_PRIM_BUFS)
next_idx = 0;
dev_priv->next_prim = dev_priv->prim_bufs[next_idx];
return;
out_prim_wait:
prim->num_dwords = 0;
prim->sec_used = 0;
clear_bit(MGA_BUF_IN_USE, &prim->buffer_status);
wakeup(&dev_priv->wait_queue);
clear_bit(MGA_BUF_SWAP_PENDING, &prim->buffer_status);
clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
}
int mga_advance_primary(drm_device_t *dev)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_prim_buf_t *prim_buffer;
drm_device_dma_t *dma = dev->dma;
int next_prim_idx;
int ret = 0;
int s;
/* This needs to reset the primary buffer if available,
* we should collect stats on how many times it bites
* it's tail */
DRM_DEBUG("%s\n", __FUNCTION__);
next_prim_idx = dev_priv->current_prim_idx + 1;
if(next_prim_idx >= MGA_NUM_PRIM_BUFS)
next_prim_idx = 0;
prim_buffer = dev_priv->prim_bufs[next_prim_idx];
set_bit(MGA_IN_WAIT, &dev_priv->dispatch_status);
/* In use is cleared in interrupt handler */
s = splsofttq();
if(test_and_set_bit(MGA_BUF_IN_USE, &prim_buffer->buffer_status)) {
for (;;) {
mga_dma_schedule(dev, 0);
if(!test_and_set_bit(MGA_BUF_IN_USE,
&prim_buffer->buffer_status))
break;
atomic_inc(&dev->total_sleeps);
atomic_inc(&dma->total_missed_sched);
ret = tsleep(&dev_priv->wait_queue, PZERO|PCATCH,
"mgaap", 0);
if (ret)
break;
}
if(ret) {
splx(s);
return ret;
}
}
clear_bit(MGA_IN_WAIT, &dev_priv->dispatch_status);
splx(s);
/* This primary buffer is now free to use */
prim_buffer->current_dma_ptr = prim_buffer->head;
prim_buffer->num_dwords = 0;
prim_buffer->sec_used = 0;
prim_buffer->prim_age = dev_priv->next_prim_age++;
if(prim_buffer->prim_age == 0 || prim_buffer->prim_age == 0xffffffff) {
mga_flush_queue(dev);
mga_dma_quiescent(dev);
mga_reset_freelist(dev);
prim_buffer->prim_age = (dev_priv->next_prim_age += 2);
}
/* Reset all buffer status stuff */
clear_bit(MGA_BUF_NEEDS_OVERFLOW, &prim_buffer->buffer_status);
clear_bit(MGA_BUF_FORCE_FIRE, &prim_buffer->buffer_status);
clear_bit(MGA_BUF_SWAP_PENDING, &prim_buffer->buffer_status);
dev_priv->current_prim = prim_buffer;
dev_priv->current_prim_idx = next_prim_idx;
return 0;
}
/* More dynamic performance decisions */
static __inline int mga_decide_to_fire(drm_device_t *dev)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_device_dma_t *dma = dev->dma;
DRM_DEBUG("%s\n", __FUNCTION__);
if(test_bit(MGA_BUF_FORCE_FIRE, &dev_priv->next_prim->buffer_status)) {
atomic_inc(&dma->total_prio);
return 1;
}
if (test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status) &&
dev_priv->next_prim->num_dwords) {
atomic_inc(&dma->total_prio);
return 1;
}
if (test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) &&
dev_priv->next_prim->num_dwords) {
atomic_inc(&dma->total_prio);
return 1;
}
if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS - 1) {
if(test_bit(MGA_BUF_SWAP_PENDING,
&dev_priv->next_prim->buffer_status)) {
atomic_inc(&dma->total_dmas);
return 1;
}
}
if(atomic_read(&dev_priv->pending_bufs) <= MGA_NUM_PRIM_BUFS / 2) {
if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 8) {
atomic_inc(&dma->total_hit);
return 1;
}
}
if(atomic_read(&dev_priv->pending_bufs) >= MGA_NUM_PRIM_BUFS / 2) {
if(dev_priv->next_prim->sec_used >= MGA_DMA_BUF_NR / 4) {
atomic_inc(&dma->total_missed_free);
return 1;
}
}
atomic_inc(&dma->total_tried);
return 0;
}
int mga_dma_schedule(drm_device_t *dev, int locked)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_device_dma_t *dma = dev->dma;
if (test_and_set_bit(0, &dev->dma_flag)) {
atomic_inc(&dma->total_missed_dma);
return EBUSY;
}
DRM_DEBUG("%s\n", __FUNCTION__);
if (!dev_priv) {
DRM_DEBUG("dev_priv is not set\n");
return (0);
}
if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) ||
test_bit(MGA_IN_WAIT, &dev_priv->dispatch_status) ||
test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) {
locked = 1;
}
if (!locked &&
!drm_lock_take(&dev->lock.hw_lock->lock, DRM_KERNEL_CONTEXT)) {
atomic_inc(&dma->total_missed_lock);
clear_bit(0, &dev->dma_flag);
DRM_DEBUG("Not locked\n");
return EBUSY;
}
DRM_DEBUG("I'm locked\n");
if(!test_and_set_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status)) {
/* Fire dma buffer */
if(mga_decide_to_fire(dev)) {
DRM_DEBUG("idx :%d\n", dev_priv->next_prim->idx);
clear_bit(MGA_BUF_FORCE_FIRE,
&dev_priv->next_prim->buffer_status);
if(dev_priv->current_prim == dev_priv->next_prim) {
/* Schedule overflow for a later time */
set_bit(MGA_BUF_NEEDS_OVERFLOW,
&dev_priv->next_prim->buffer_status);
}
mga_fire_primary(dev, dev_priv->next_prim);
} else {
clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
}
} else {
DRM_DEBUG("I can't get the dispatch lock\n");
}
if (!locked) {
if (drm_lock_free(dev, &dev->lock.hw_lock->lock,
DRM_KERNEL_CONTEXT)) {
DRM_ERROR("\n");
}
}
if(test_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status) &&
dev_priv->next_prim->num_dwords == 0 &&
atomic_read(&dev_priv->pending_bufs) == 0) {
/* Everything has been processed by the hardware */
clear_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status);
wakeup(&dev_priv->flush_queue);
}
if(test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status) &&
dev_priv->tail->age < dev_priv->last_prim_age) {
clear_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status);
DRM_DEBUG("Waking up buf queue\n");
wakeup(&dev_priv->buf_queue);
} else if (test_bit(MGA_IN_GETBUF, &dev_priv->dispatch_status)) {
DRM_DEBUG("Not waking buf_queue on %d %d\n",
atomic_read(&dev->total_irq),
dev_priv->last_prim_age);
}
clear_bit(0, &dev->dma_flag);
return 0;
}
static void mga_dma_service(void *arg)
{
drm_device_t *dev = (drm_device_t *)arg;
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
drm_mga_prim_buf_t *last_prim_buffer;
DRM_DEBUG("%s\n", __FUNCTION__);
atomic_inc(&dev->total_irq);
if((MGA_READ(MGAREG_STATUS) & 0x00000001) != 0x00000001) return;
MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
last_prim_buffer = dev_priv->last_prim;
last_prim_buffer->num_dwords = 0;
last_prim_buffer->sec_used = 0;
dev_priv->sarea_priv->last_dispatch =
dev_priv->last_prim_age = last_prim_buffer->prim_age;
clear_bit(MGA_BUF_IN_USE, &last_prim_buffer->buffer_status);
wakeup(&dev_priv->wait_queue);
clear_bit(MGA_BUF_SWAP_PENDING, &last_prim_buffer->buffer_status);
clear_bit(MGA_IN_DISPATCH, &dev_priv->dispatch_status);
atomic_dec(&dev_priv->pending_bufs);
taskqueue_enqueue(taskqueue_swi, &dev->task);
}
static void mga_dma_task_queue(void *device, int pending)
{
DRM_DEBUG("%s\n", __FUNCTION__);
mga_dma_schedule((drm_device_t *)device, 0);
}
int mga_dma_cleanup(drm_device_t *dev)
{
DRM_DEBUG("%s\n", __FUNCTION__);
if(dev->dev_private) {
drm_mga_private_t *dev_priv =
(drm_mga_private_t *) dev->dev_private;
if(dev_priv->ioremap) {
int temp = (dev_priv->warp_ucode_size +
dev_priv->primary_size +
PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE;
drm_ioremapfree((void *) dev_priv->ioremap, temp);
}
if(dev_priv->real_status_page != 0UL) {
mga_free_page(dev, dev_priv->real_status_page);
}
if(dev_priv->prim_bufs != NULL) {
int i;
for(i = 0; i < MGA_NUM_PRIM_BUFS; i++) {
if(dev_priv->prim_bufs[i] != NULL) {
drm_free(dev_priv->prim_bufs[i],
sizeof(drm_mga_prim_buf_t),
DRM_MEM_DRIVER);
}
}
drm_free(dev_priv->prim_bufs, sizeof(void *) *
(MGA_NUM_PRIM_BUFS + 1),
DRM_MEM_DRIVER);
}
if(dev_priv->head != NULL) {
mga_freelist_cleanup(dev);
}
drm_free(dev->dev_private, sizeof(drm_mga_private_t),
DRM_MEM_DRIVER);
dev->dev_private = NULL;
}
return 0;
}
static int mga_dma_initialize(drm_device_t *dev, drm_mga_init_t *init) {
drm_mga_private_t *dev_priv;
drm_map_t *sarea_map = NULL;
int i;
DRM_DEBUG("%s\n", __FUNCTION__);
dev_priv = drm_alloc(sizeof(drm_mga_private_t), DRM_MEM_DRIVER);
if(dev_priv == NULL) return ENOMEM;
dev->dev_private = (void *) dev_priv;
memset(dev_priv, 0, sizeof(drm_mga_private_t));
if((init->reserved_map_idx >= dev->map_count) ||
(init->buffer_map_idx >= dev->map_count)) {
mga_dma_cleanup(dev);
DRM_DEBUG("reserved_map or buffer_map are invalid\n");
return EINVAL;
}
dev_priv->reserved_map_idx = init->reserved_map_idx;
dev_priv->buffer_map_idx = init->buffer_map_idx;
sarea_map = dev->maplist[0];
dev_priv->sarea_priv = (drm_mga_sarea_t *)
((u_int8_t *)sarea_map->handle +
init->sarea_priv_offset);
/* Scale primary size to the next page */
dev_priv->chipset = init->chipset;
dev_priv->frontOffset = init->frontOffset;
dev_priv->backOffset = init->backOffset;
dev_priv->depthOffset = init->depthOffset;
dev_priv->textureOffset = init->textureOffset;
dev_priv->textureSize = init->textureSize;
dev_priv->cpp = init->cpp;
dev_priv->sgram = init->sgram;
dev_priv->stride = init->stride;
dev_priv->mAccess = init->mAccess;
dev_priv->flush_queue = 0;
dev_priv->buf_queue = 0;
dev_priv->WarpPipe = -1;
DRM_DEBUG("chipset: %d ucode_size: %d backOffset: %x depthOffset: %x\n",
dev_priv->chipset, dev_priv->warp_ucode_size,
dev_priv->backOffset, dev_priv->depthOffset);
DRM_DEBUG("cpp: %d sgram: %d stride: %d maccess: %x\n",
dev_priv->cpp, dev_priv->sgram, dev_priv->stride,
dev_priv->mAccess);
memcpy(&dev_priv->WarpIndex, &init->WarpIndex,
sizeof(drm_mga_warp_index_t) * MGA_MAX_WARP_PIPES);
for (i = 0 ; i < MGA_MAX_WARP_PIPES ; i++)
DRM_DEBUG("warp pipe %d: installed: %d phys: %lx size: %x\n",
i,
dev_priv->WarpIndex[i].installed,
dev_priv->WarpIndex[i].phys_addr,
dev_priv->WarpIndex[i].size);
if(mga_init_primary_bufs(dev, init) != 0) {
DRM_ERROR("Can not initialize primary buffers\n");
mga_dma_cleanup(dev);
return ENOMEM;
}
dev_priv->real_status_page = mga_alloc_page(dev);
if(dev_priv->real_status_page == 0UL) {
mga_dma_cleanup(dev);
DRM_ERROR("Can not allocate status page\n");
return ENOMEM;
}
dev_priv->status_page = (void*)dev_priv->real_status_page; /* XXX wants nocache */
#if 0
dev_priv->status_page =
ioremap_nocache(virt_to_bus((void *)dev_priv->real_status_page),
PAGE_SIZE);
if(dev_priv->status_page == NULL) {
mga_dma_cleanup(dev);
DRM_ERROR("Can not remap status page\n");
return ENOMEM;
}
#endif
/* Write status page when secend or softrap occurs */
MGA_WRITE(MGAREG_PRIMPTR,
vtophys((void *)dev_priv->real_status_page) | 0x00000003);
/* Private is now filled in, initialize the hardware */
{
PRIMLOCALS;
PRIMGETPTR( dev_priv );
PRIMOUTREG(MGAREG_DMAPAD, 0);
PRIMOUTREG(MGAREG_DMAPAD, 0);
PRIMOUTREG(MGAREG_DWGSYNC, 0x0100);
PRIMOUTREG(MGAREG_SOFTRAP, 0);
/* Poll for the first buffer to insure that
* the status register will be correct
*/
mga_flush_write_combine();
MGA_WRITE(MGAREG_PRIMADDRESS, phys_head | TT_GENERAL);
MGA_WRITE(MGAREG_PRIMEND, ((phys_head + num_dwords * 4) |
PDEA_pagpxfer_enable));
while(MGA_READ(MGAREG_DWGSYNC) != 0x0100) ;
}
if(mga_freelist_init(dev) != 0) {
DRM_ERROR("Could not initialize freelist\n");
mga_dma_cleanup(dev);
return ENOMEM;
}
return 0;
}
int
mga_dma_init(dev_t kdev, u_long cmd, caddr_t data, int flags, struct proc *p)
{
drm_device_t *dev = kdev->si_drv1;
drm_mga_init_t init;
DRM_DEBUG("%s\n", __FUNCTION__);
init = *(drm_mga_init_t *) data;
switch(init.func) {
case MGA_INIT_DMA:
return mga_dma_initialize(dev, &init);
case MGA_CLEANUP_DMA:
return mga_dma_cleanup(dev);
}
return EINVAL;
}
int mga_irq_install(drm_device_t *dev, int irq)
{
int rid;
int retcode;
if (!irq) return EINVAL;
lockmgr(&dev->dev_lock, LK_EXCLUSIVE, 0, curproc);
if (dev->irq) {
lockmgr(&dev->dev_lock, LK_RELEASE, 0, curproc);
return EBUSY;
}
lockmgr(&dev->dev_lock, LK_RELEASE, 0, curproc);
DRM_DEBUG("install irq handler %d\n", irq);
dev->context_flag = 0;
dev->interrupt_flag = 0;
dev->dma_flag = 0;
dev->dma->next_buffer = NULL;
dev->dma->next_queue = NULL;
dev->dma->this_buffer = NULL;
TASK_INIT(&dev->task, 0, mga_dma_task_queue, dev);
/* Before installing handler */
MGA_WRITE(MGAREG_IEN, 0);
/* Install handler */
rid = 0;
dev->irq = bus_alloc_resource(dev->device, SYS_RES_IRQ, &rid,
0, ~0, 1, RF_SHAREABLE);
if (!dev->irq)
return ENOENT;
retcode = bus_setup_intr(dev->device, dev->irq, INTR_TYPE_TTY,
mga_dma_service, dev, &dev->irqh);
if (retcode) {
bus_release_resource(dev->device, SYS_RES_IRQ, 0, dev->irq);
dev->irq = 0;
return retcode;
}
/* After installing handler */
MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
MGA_WRITE(MGAREG_IEN, 0x00000001);
return 0;
}
int mga_irq_uninstall(drm_device_t *dev)
{
if (!dev->irq)
return EINVAL;
DRM_DEBUG("remove irq handler %ld\n", rman_get_start(dev->irq));
MGA_WRITE(MGAREG_ICLEAR, 0x00000001);
MGA_WRITE(MGAREG_IEN, 0);
bus_teardown_intr(dev->device, dev->irq, dev->irqh);
bus_release_resource(dev->device, SYS_RES_IRQ, 0, dev->irq);
dev->irq = 0;
return 0;
}
int mga_control(dev_t kdev, u_long cmd, caddr_t data,
int flags, struct proc *p)
{
drm_device_t *dev = kdev->si_drv1;
drm_control_t ctl;
ctl = *(drm_control_t *) data;
DRM_DEBUG("%s\n", __FUNCTION__);
switch (ctl.func) {
case DRM_INST_HANDLER:
return mga_irq_install(dev, ctl.irq);
case DRM_UNINST_HANDLER:
return mga_irq_uninstall(dev);
default:
return EINVAL;
}
}
static int mga_flush_queue(drm_device_t *dev)
{
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
int ret = 0;
int s;
DRM_DEBUG("%s\n", __FUNCTION__);
if(dev_priv == NULL) {
return 0;
}
if(dev_priv->next_prim->num_dwords != 0) {
s = splsofttq();
set_bit(MGA_IN_FLUSH, &dev_priv->dispatch_status);
for (;;) {
mga_dma_schedule(dev, 0);
if (!test_bit(MGA_IN_FLUSH,
&dev_priv->dispatch_status))
break;
atomic_inc(&dev->total_sleeps);
ret = tsleep(&dev_priv->flush_queue, PZERO|PCATCH,
"mgafq", 0);
if (ret) {
clear_bit(MGA_IN_FLUSH,
&dev_priv->dispatch_status);
break;
}
}
splx(s);
}
return ret;
}
/* Must be called with the lock held */
void mga_reclaim_buffers(drm_device_t *dev, pid_t pid)
{
drm_device_dma_t *dma = dev->dma;
int i;
if (!dma) return;
if(dev->dev_private == NULL) return;
if(dma->buflist == NULL) return;
DRM_DEBUG("%s\n", __FUNCTION__);
mga_flush_queue(dev);
for (i = 0; i < dma->buf_count; i++) {
drm_buf_t *buf = dma->buflist[ i ];
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
/* Only buffers that need to get reclaimed ever
* get set to free
*/
if (buf->pid == pid && buf_priv) {
if(buf_priv->my_freelist->age == MGA_BUF_USED)
buf_priv->my_freelist->age = MGA_BUF_FREE;
}
}
}
int mga_lock(dev_t kdev, u_long cmd, caddr_t data,
int flags, struct proc *p)
{
drm_device_t *dev = kdev->si_drv1;
int ret = 0;
drm_lock_t lock;
DRM_DEBUG("%s\n", __FUNCTION__);
lock = *(drm_lock_t *) data;
if (lock.context == DRM_KERNEL_CONTEXT) {
DRM_ERROR("Process %d using kernel context %d\n",
p->p_pid, lock.context);
return EINVAL;
}
DRM_DEBUG("%d (pid %d) requests lock (0x%08x), flags = 0x%08x\n",
lock.context, p->p_pid, dev->lock.hw_lock->lock,
lock.flags);
if (lock.context < 0) {
return EINVAL;
}
/* Only one queue:
*/
if (!ret) {
atomic_inc(&dev->lock.lock_queue);
for (;;) {
if (!dev->lock.hw_lock) {
/* Device has been unregistered */
ret = EINTR;
break;
}
if (drm_lock_take(&dev->lock.hw_lock->lock,
lock.context)) {
dev->lock.pid = p->p_pid;
dev->lock.lock_time = ticks;
atomic_inc(&dev->total_locks);
break; /* Got lock */
}
/* Contention */
atomic_inc(&dev->total_sleeps);
ret = tsleep(&dev->lock.lock_queue, PZERO|PCATCH,
"mgal2", 0);
if (ret)
break;
}
atomic_dec(&dev->lock.lock_queue);
}
if (!ret) {
if (lock.flags & _DRM_LOCK_QUIESCENT) {
DRM_DEBUG("_DRM_LOCK_QUIESCENT\n");
mga_flush_queue(dev);
mga_dma_quiescent(dev);
}
}
DRM_DEBUG("%d %s\n", lock.context, ret ? "interrupted" : "has lock");
return ret;
}
int mga_flush_ioctl(dev_t kdev, u_long cmd, caddr_t data,
int flags, struct proc *p)
{
drm_device_t *dev = kdev->si_drv1;
drm_lock_t lock;
drm_mga_private_t *dev_priv = (drm_mga_private_t *)dev->dev_private;
int s;
DRM_DEBUG("%s\n", __FUNCTION__);
lock = *(drm_lock_t *) data;
if(!_DRM_LOCK_IS_HELD(dev->lock.hw_lock->lock)) {
DRM_ERROR("mga_flush_ioctl called without lock held\n");
return EINVAL;
}
if(lock.flags & _DRM_LOCK_FLUSH || lock.flags & _DRM_LOCK_FLUSH_ALL) {
drm_mga_prim_buf_t *temp_buf =
dev_priv->prim_bufs[dev_priv->current_prim_idx];
if(temp_buf && temp_buf->num_dwords) {
s = splsofttq();
set_bit(MGA_BUF_FORCE_FIRE, &temp_buf->buffer_status);
mga_advance_primary(dev);
mga_dma_schedule(dev, 1);
splx(s);
}
}
if(lock.flags & _DRM_LOCK_QUIESCENT) {
mga_flush_queue(dev);
mga_dma_quiescent(dev);
}
return 0;
}