drm/shared-core/nouveau_mem.c

810 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
* Copyright 2005 Stephane Marchesin
*
* The Weather Channel (TM) funded Tungsten Graphics to develop the
* initial release of the Radeon 8500 driver under the XFree86 license.
* This notice must be preserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "drmP.h"
#include "drm.h"
#include "drm_sarea.h"
#include "nouveau_drv.h"
static struct mem_block *
split_block(struct mem_block *p, uint64_t start, uint64_t size,
struct drm_file *file_priv)
{
/* Maybe cut off the start of an existing block */
if (start > p->start) {
struct mem_block *newblock =
drm_alloc(sizeof(*newblock), DRM_MEM_BUFS);
if (!newblock)
goto out;
newblock->start = start;
newblock->size = p->size - (start - p->start);
newblock->file_priv = NULL;
newblock->next = p->next;
newblock->prev = p;
p->next->prev = newblock;
p->next = newblock;
p->size -= newblock->size;
p = newblock;
}
/* Maybe cut off the end of an existing block */
if (size < p->size) {
struct mem_block *newblock =
drm_alloc(sizeof(*newblock), DRM_MEM_BUFS);
if (!newblock)
goto out;
newblock->start = start + size;
newblock->size = p->size - size;
newblock->file_priv = NULL;
newblock->next = p->next;
newblock->prev = p;
p->next->prev = newblock;
p->next = newblock;
p->size = size;
}
out:
/* Our block is in the middle */
p->file_priv = file_priv;
return p;
}
struct mem_block *
nouveau_mem_alloc_block(struct mem_block *heap, uint64_t size,
int align2, struct drm_file *file_priv, int tail)
{
struct mem_block *p;
uint64_t mask = (1 << align2) - 1;
if (!heap)
return NULL;
if (tail) {
list_for_each_prev(p, heap) {
uint64_t start = ((p->start + p->size) - size) & ~mask;
if (p->file_priv == 0 && start >= p->start &&
start + size <= p->start + p->size)
return split_block(p, start, size, file_priv);
}
} else {
list_for_each(p, heap) {
uint64_t start = (p->start + mask) & ~mask;
if (p->file_priv == 0 &&
start + size <= p->start + p->size)
return split_block(p, start, size, file_priv);
}
}
return NULL;
}
static struct mem_block *find_block(struct mem_block *heap, uint64_t start)
{
struct mem_block *p;
list_for_each(p, heap)
if (p->start == start)
return p;
return NULL;
}
struct mem_block *find_block_by_handle(struct mem_block *heap, drm_handle_t handle)
{
struct mem_block *p;
list_for_each(p, heap)
if (p->map_handle == handle)
return p;
return NULL;
}
void nouveau_mem_free_block(struct mem_block *p)
{
p->file_priv = NULL;
/* Assumes a single contiguous range. Needs a special file_priv in
* 'heap' to stop it being subsumed.
*/
if (p->next->file_priv == 0) {
struct mem_block *q = p->next;
p->size += q->size;
p->next = q->next;
p->next->prev = p;
drm_free(q, sizeof(*q), DRM_MEM_BUFS);
}
if (p->prev->file_priv == 0) {
struct mem_block *q = p->prev;
q->size += p->size;
q->next = p->next;
q->next->prev = q;
drm_free(p, sizeof(*q), DRM_MEM_BUFS);
}
}
/* Initialize. How to check for an uninitialized heap?
*/
int nouveau_mem_init_heap(struct mem_block **heap, uint64_t start,
uint64_t size)
{
struct mem_block *blocks = drm_alloc(sizeof(*blocks), DRM_MEM_BUFS);
if (!blocks)
return -ENOMEM;
*heap = drm_alloc(sizeof(**heap), DRM_MEM_BUFS);
if (!*heap) {
drm_free(blocks, sizeof(*blocks), DRM_MEM_BUFS);
return -ENOMEM;
}
blocks->start = start;
blocks->size = size;
blocks->file_priv = NULL;
blocks->next = blocks->prev = *heap;
memset(*heap, 0, sizeof(**heap));
(*heap)->file_priv = (struct drm_file *) - 1;
(*heap)->next = (*heap)->prev = blocks;
return 0;
}
/*
* Free all blocks associated with the releasing file_priv
*/
void nouveau_mem_release(struct drm_file *file_priv, struct mem_block *heap)
{
struct mem_block *p;
if (!heap || !heap->next)
return;
list_for_each(p, heap) {
if (p->file_priv == file_priv)
p->file_priv = NULL;
}
/* Assumes a single contiguous range. Needs a special file_priv in
* 'heap' to stop it being subsumed.
*/
list_for_each(p, heap) {
while ((p->file_priv == 0) && (p->next->file_priv == 0) &&
(p->next!=heap)) {
struct mem_block *q = p->next;
p->size += q->size;
p->next = q->next;
p->next->prev = p;
drm_free(q, sizeof(*q), DRM_MEM_DRIVER);
}
}
}
/*
* Cleanup everything
*/
void nouveau_mem_takedown(struct mem_block **heap)
{
struct mem_block *p;
if (!*heap)
return;
for (p = (*heap)->next; p != *heap;) {
struct mem_block *q = p;
p = p->next;
drm_free(q, sizeof(*q), DRM_MEM_DRIVER);
}
drm_free(*heap, sizeof(**heap), DRM_MEM_DRIVER);
*heap = NULL;
}
void nouveau_mem_close(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
nouveau_mem_takedown(&dev_priv->agp_heap);
nouveau_mem_takedown(&dev_priv->fb_heap);
if (dev_priv->pci_heap)
nouveau_mem_takedown(&dev_priv->pci_heap);
}
/*XXX won't work on BSD because of pci_read_config_dword */
static uint32_t
nouveau_mem_fb_amount_igp(struct drm_device *dev)
{
2007-10-22 18:18:56 -06:00
#if defined(__linux__) && (LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19))
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct pci_dev *bridge;
uint32_t mem;
bridge = pci_get_bus_and_slot(0, PCI_DEVFN(0,1));
if (!bridge) {
DRM_ERROR("no bridge device\n");
return 0;
}
if (dev_priv->flags&NV_NFORCE) {
pci_read_config_dword(bridge, 0x7C, &mem);
return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
} else
if(dev_priv->flags&NV_NFORCE2) {
pci_read_config_dword(bridge, 0x84, &mem);
return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
}
DRM_ERROR("impossible!\n");
#else
DRM_ERROR("Linux kernel >= 2.6.19 required to check for igp memory amount\n");
#endif
return 0;
}
/* returns the amount of FB ram in bytes */
uint64_t nouveau_mem_fb_amount(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv=dev->dev_private;
switch(dev_priv->card_type)
{
case NV_04:
case NV_05:
if (NV_READ(NV03_BOOT_0) & 0x00000100) {
return (((NV_READ(NV03_BOOT_0) >> 12) & 0xf)*2+2)*1024*1024;
} else
switch(NV_READ(NV03_BOOT_0)&NV03_BOOT_0_RAM_AMOUNT)
{
case NV04_BOOT_0_RAM_AMOUNT_32MB:
return 32*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_16MB:
return 16*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_8MB:
return 8*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_4MB:
return 4*1024*1024;
}
break;
case NV_10:
case NV_11:
case NV_17:
case NV_20:
case NV_30:
case NV_40:
case NV_44:
case NV_50:
default:
if (dev_priv->flags & (NV_NFORCE | NV_NFORCE2)) {
return nouveau_mem_fb_amount_igp(dev);
} else {
uint64_t mem;
mem = (NV_READ(NV04_FIFO_DATA) &
NV10_FIFO_DATA_RAM_AMOUNT_MB_MASK) >>
NV10_FIFO_DATA_RAM_AMOUNT_MB_SHIFT;
return mem*1024*1024;
}
break;
}
DRM_ERROR("Unable to detect video ram size. Please report your setup to " DRIVER_EMAIL "\n");
return 0;
}
static void nouveau_mem_reset_agp(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t saved_pci_nv_1, saved_pci_nv_19, pmc_enable;
saved_pci_nv_1 = NV_READ(NV04_PBUS_PCI_NV_1);
saved_pci_nv_19 = NV_READ(NV04_PBUS_PCI_NV_19);
/* clear busmaster bit */
NV_WRITE(NV04_PBUS_PCI_NV_1, saved_pci_nv_1 & ~0x4);
/* clear SBA and AGP bits */
NV_WRITE(NV04_PBUS_PCI_NV_19, saved_pci_nv_19 & 0xfffff0ff);
/* power cycle pgraph, if enabled */
pmc_enable = NV_READ(NV03_PMC_ENABLE);
if (pmc_enable & NV_PMC_ENABLE_PGRAPH) {
NV_WRITE(NV03_PMC_ENABLE, pmc_enable & ~NV_PMC_ENABLE_PGRAPH);
NV_WRITE(NV03_PMC_ENABLE, NV_READ(NV03_PMC_ENABLE) |
NV_PMC_ENABLE_PGRAPH);
}
/* and restore (gives effect of resetting AGP) */
NV_WRITE(NV04_PBUS_PCI_NV_19, saved_pci_nv_19);
NV_WRITE(NV04_PBUS_PCI_NV_1, saved_pci_nv_1);
}
static int
nouveau_mem_init_agp(struct drm_device *dev, int ttm)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_agp_info info;
struct drm_agp_mode mode;
int ret;
nouveau_mem_reset_agp(dev);
ret = drm_agp_acquire(dev);
if (ret) {
DRM_ERROR("Unable to acquire AGP: %d\n", ret);
return ret;
}
ret = drm_agp_info(dev, &info);
if (ret) {
DRM_ERROR("Unable to get AGP info: %d\n", ret);
return ret;
}
/* see agp.h for the AGPSTAT_* modes available */
mode.mode = info.mode;
ret = drm_agp_enable(dev, mode);
if (ret) {
DRM_ERROR("Unable to enable AGP: %d\n", ret);
return ret;
}
if (!ttm) {
struct drm_agp_buffer agp_req;
struct drm_agp_binding bind_req;
agp_req.size = info.aperture_size;
agp_req.type = 0;
ret = drm_agp_alloc(dev, &agp_req);
if (ret) {
DRM_ERROR("Unable to alloc AGP: %d\n", ret);
return ret;
}
bind_req.handle = agp_req.handle;
bind_req.offset = 0;
ret = drm_agp_bind(dev, &bind_req);
if (ret) {
DRM_ERROR("Unable to bind AGP: %d\n", ret);
return ret;
}
}
dev_priv->gart_info.type = NOUVEAU_GART_AGP;
dev_priv->gart_info.aper_base = info.aperture_base;
dev_priv->gart_info.aper_size = info.aperture_size;
return 0;
}
#define HACK_OLD_MM
int
nouveau_mem_init_ttm(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t vram_size, bar1_size;
int ret;
dev_priv->agp_heap = dev_priv->pci_heap = dev_priv->fb_heap = NULL;
dev_priv->fb_phys = drm_get_resource_start(dev,1);
dev_priv->gart_info.type = NOUVEAU_GART_NONE;
drm_bo_driver_init(dev);
/* non-mappable vram */
dev_priv->fb_available_size = nouveau_mem_fb_amount(dev);
dev_priv->fb_available_size -= dev_priv->ramin_rsvd_vram;
vram_size = dev_priv->fb_available_size >> PAGE_SHIFT;
bar1_size = drm_get_resource_len(dev, 1) >> PAGE_SHIFT;
if (bar1_size < vram_size) {
if ((ret = drm_bo_init_mm(dev, DRM_BO_MEM_PRIV0,
bar1_size, vram_size - bar1_size, 1))) {
DRM_ERROR("Failed PRIV0 mm init: %d\n", ret);
return ret;
}
vram_size = bar1_size;
}
/* mappable vram */
#ifdef HACK_OLD_MM
vram_size /= 4;
#endif
if ((ret = drm_bo_init_mm(dev, DRM_BO_MEM_VRAM, 0, vram_size, 1))) {
DRM_ERROR("Failed VRAM mm init: %d\n", ret);
return ret;
}
/* GART */
2008-02-15 19:50:10 -07:00
#if !defined(__powerpc__) && !defined(__ia64__)
if (drm_device_is_agp(dev) && dev->agp) {
if ((ret = nouveau_mem_init_agp(dev, 1)))
DRM_ERROR("Error initialising AGP: %d\n", ret);
}
#endif
if (dev_priv->gart_info.type == NOUVEAU_GART_NONE) {
if ((ret = nouveau_sgdma_init(dev)))
DRM_ERROR("Error initialising PCI SGDMA: %d\n", ret);
}
if ((ret = drm_bo_init_mm(dev, DRM_BO_MEM_TT, 0,
dev_priv->gart_info.aper_size >>
PAGE_SHIFT, 1))) {
DRM_ERROR("Failed TT mm init: %d\n", ret);
return ret;
}
#ifdef HACK_OLD_MM
vram_size <<= PAGE_SHIFT;
DRM_INFO("Old MM using %dKiB VRAM\n", (vram_size * 3) >> 10);
if (nouveau_mem_init_heap(&dev_priv->fb_heap, vram_size, vram_size * 3))
return -ENOMEM;
#endif
return 0;
}
int nouveau_mem_init(struct drm_device *dev)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
uint32_t fb_size;
int ret = 0;
dev_priv->agp_heap = dev_priv->pci_heap = dev_priv->fb_heap = NULL;
dev_priv->fb_phys = 0;
dev_priv->gart_info.type = NOUVEAU_GART_NONE;
/* setup a mtrr over the FB */
dev_priv->fb_mtrr = drm_mtrr_add(drm_get_resource_start(dev, 1),
nouveau_mem_fb_amount(dev),
DRM_MTRR_WC);
/* Init FB */
dev_priv->fb_phys=drm_get_resource_start(dev,1);
fb_size = nouveau_mem_fb_amount(dev);
/* On G80, limit VRAM to 512MiB temporarily due to limits in how
* we handle VRAM page tables.
*/
if (dev_priv->card_type >= NV_50 && fb_size > (512 * 1024 * 1024))
fb_size = (512 * 1024 * 1024);
/* On at least NV40, RAMIN is actually at the end of vram.
* We don't want to allocate this... */
if (dev_priv->card_type >= NV_40)
fb_size -= dev_priv->ramin_rsvd_vram;
dev_priv->fb_available_size = fb_size;
DRM_DEBUG("Available VRAM: %dKiB\n", fb_size>>10);
if (fb_size>256*1024*1024) {
/* On cards with > 256Mb, you can't map everything.
* So we create a second FB heap for that type of memory */
if (nouveau_mem_init_heap(&dev_priv->fb_heap,
0, 256*1024*1024))
return -ENOMEM;
if (nouveau_mem_init_heap(&dev_priv->fb_nomap_heap,
256*1024*1024, fb_size-256*1024*1024))
return -ENOMEM;
} else {
if (nouveau_mem_init_heap(&dev_priv->fb_heap, 0, fb_size))
return -ENOMEM;
dev_priv->fb_nomap_heap=NULL;
}
2008-02-15 19:50:10 -07:00
#if !defined(__powerpc__) && !defined(__ia64__)
/* Init AGP / NV50 PCIEGART */
if (drm_device_is_agp(dev) && dev->agp) {
if ((ret = nouveau_mem_init_agp(dev, 0)))
DRM_ERROR("Error initialising AGP: %d\n", ret);
}
#endif
/*Note: this is *not* just NV50 code, but only used on NV50 for now */
2007-10-15 21:43:57 -06:00
if (dev_priv->gart_info.type == NOUVEAU_GART_NONE &&
dev_priv->card_type >= NV_50) {
ret = nouveau_sgdma_init(dev);
if (!ret) {
ret = nouveau_sgdma_nottm_hack_init(dev);
if (ret)
nouveau_sgdma_takedown(dev);
}
if (ret)
DRM_ERROR("Error initialising SG DMA: %d\n", ret);
}
if (dev_priv->gart_info.type != NOUVEAU_GART_NONE) {
if (nouveau_mem_init_heap(&dev_priv->agp_heap,
0, dev_priv->gart_info.aper_size)) {
if (dev_priv->gart_info.type == NOUVEAU_GART_SGDMA) {
nouveau_sgdma_nottm_hack_takedown(dev);
nouveau_sgdma_takedown(dev);
}
}
}
/* NV04-NV40 PCIEGART */
if (!dev_priv->agp_heap && dev_priv->card_type < NV_50) {
struct drm_scatter_gather sgreq;
DRM_DEBUG("Allocating sg memory for PCI DMA\n");
sgreq.size = 16 << 20; //16MB of PCI scatter-gather zone
if (drm_sg_alloc(dev, &sgreq)) {
2007-10-14 08:56:17 -06:00
DRM_ERROR("Unable to allocate %ldMB of scatter-gather"
" pages for PCI DMA!",sgreq.size>>20);
} else {
if (nouveau_mem_init_heap(&dev_priv->pci_heap, 0,
dev->sg->pages * PAGE_SIZE)) {
DRM_ERROR("Unable to initialize pci_heap!");
}
}
}
/* G8x: Allocate shared page table to map real VRAM pages into */
if (dev_priv->card_type >= NV_50) {
unsigned size = ((512 * 1024 * 1024) / 65536) * 8;
ret = nouveau_gpuobj_new(dev, NULL, size, 0,
NVOBJ_FLAG_ZERO_ALLOC |
NVOBJ_FLAG_ALLOW_NO_REFS,
&dev_priv->vm_vram_pt);
if (ret) {
DRM_ERROR("Error creating VRAM page table: %d\n", ret);
return ret;
}
}
return 0;
}
struct mem_block *
nouveau_mem_alloc(struct drm_device *dev, int alignment, uint64_t size,
int flags, struct drm_file *file_priv)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct mem_block *block;
int type, tail = !(flags & NOUVEAU_MEM_USER);
/*
* Make things easier on ourselves: all allocations are page-aligned.
* We need that to map allocated regions into the user space
*/
if (alignment < PAGE_SHIFT)
alignment = PAGE_SHIFT;
/* Align allocation sizes to 64KiB blocks on G8x. We use a 64KiB
* page size in the GPU VM.
*/
if (flags & NOUVEAU_MEM_FB && dev_priv->card_type >= NV_50)
size = (size + (64 * 1024)) & ~((64 * 1024) - 1);
/*
* Warn about 0 sized allocations, but let it go through. It'll return 1 page
*/
if (size == 0)
DRM_INFO("warning : 0 byte allocation\n");
/*
* Keep alloc size a multiple of the page size to keep drm_addmap() happy
*/
if (size & (~PAGE_MASK))
size = ((size/PAGE_SIZE) + 1) * PAGE_SIZE;
#define NOUVEAU_MEM_ALLOC_AGP {\
type=NOUVEAU_MEM_AGP;\
block = nouveau_mem_alloc_block(dev_priv->agp_heap, size,\
alignment, file_priv, tail); \
if (block) goto alloc_ok;\
}
#define NOUVEAU_MEM_ALLOC_PCI {\
type = NOUVEAU_MEM_PCI;\
block = nouveau_mem_alloc_block(dev_priv->pci_heap, size, \
alignment, file_priv, tail); \
if ( block ) goto alloc_ok;\
}
#define NOUVEAU_MEM_ALLOC_FB {\
type=NOUVEAU_MEM_FB;\
if (!(flags&NOUVEAU_MEM_MAPPED)) {\
block = nouveau_mem_alloc_block(dev_priv->fb_nomap_heap,\
size, alignment, \
file_priv, tail); \
if (block) goto alloc_ok;\
}\
block = nouveau_mem_alloc_block(dev_priv->fb_heap, size,\
alignment, file_priv, tail);\
if (block) goto alloc_ok;\
}
if (flags&NOUVEAU_MEM_FB) NOUVEAU_MEM_ALLOC_FB
if (flags&NOUVEAU_MEM_AGP) NOUVEAU_MEM_ALLOC_AGP
if (flags&NOUVEAU_MEM_PCI) NOUVEAU_MEM_ALLOC_PCI
if (flags&NOUVEAU_MEM_FB_ACCEPTABLE) NOUVEAU_MEM_ALLOC_FB
if (flags&NOUVEAU_MEM_AGP_ACCEPTABLE) NOUVEAU_MEM_ALLOC_AGP
if (flags&NOUVEAU_MEM_PCI_ACCEPTABLE) NOUVEAU_MEM_ALLOC_PCI
return NULL;
alloc_ok:
block->flags=type;
/* On G8x, map memory into VM */
if (block->flags & NOUVEAU_MEM_FB && dev_priv->card_type >= NV_50 &&
!(flags & NOUVEAU_MEM_NOVM)) {
struct nouveau_gpuobj *pt = dev_priv->vm_vram_pt;
unsigned offset = block->start;
unsigned count = block->size / 65536;
if (!pt) {
DRM_ERROR("vm alloc without vm pt\n");
nouveau_mem_free_block(block);
return NULL;
}
while (count--) {
unsigned pte = offset / 65536;
INSTANCE_WR(pt, (pte * 2) + 0, offset | 1);
INSTANCE_WR(pt, (pte * 2) + 1, 0x00000000);
offset += 65536;
}
} else {
block->flags |= NOUVEAU_MEM_NOVM;
}
if (flags&NOUVEAU_MEM_MAPPED)
{
2007-07-15 20:32:51 -06:00
struct drm_map_list *entry;
int ret = 0;
block->flags|=NOUVEAU_MEM_MAPPED;
if (type == NOUVEAU_MEM_AGP) {
if (dev_priv->gart_info.type != NOUVEAU_GART_SGDMA)
2007-07-12 10:18:59 -06:00
ret = drm_addmap(dev, block->start, block->size,
_DRM_AGP, 0, &block->map);
else
ret = drm_addmap(dev, block->start, block->size,
_DRM_SCATTER_GATHER, 0, &block->map);
}
else if (type == NOUVEAU_MEM_FB)
ret = drm_addmap(dev, block->start + dev_priv->fb_phys,
block->size, _DRM_FRAME_BUFFER,
0, &block->map);
else if (type == NOUVEAU_MEM_PCI)
ret = drm_addmap(dev, block->start, block->size,
_DRM_SCATTER_GATHER, 0, &block->map);
if (ret) {
nouveau_mem_free_block(block);
return NULL;
}
entry = drm_find_matching_map(dev, block->map);
if (!entry) {
nouveau_mem_free_block(block);
return NULL;
}
block->map_handle = entry->user_token;
}
2008-01-23 08:40:19 -07:00
DRM_DEBUG("allocated %lld bytes at 0x%llx type=0x%08x\n", block->size, block->start, block->flags);
return block;
}
void nouveau_mem_free(struct drm_device* dev, struct mem_block* block)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
DRM_DEBUG("freeing 0x%llx type=0x%08x\n", block->start, block->flags);
if (block->flags&NOUVEAU_MEM_MAPPED)
drm_rmmap(dev, block->map);
/* G8x: Remove pages from vm */
if (block->flags & NOUVEAU_MEM_FB && dev_priv->card_type >= NV_50 &&
!(block->flags & NOUVEAU_MEM_NOVM)) {
struct nouveau_gpuobj *pt = dev_priv->vm_vram_pt;
unsigned offset = block->start;
unsigned count = block->size / 65536;
if (!pt) {
DRM_ERROR("vm free without vm pt\n");
goto out_free;
}
while (count--) {
unsigned pte = offset / 65536;
INSTANCE_WR(pt, (pte * 2) + 0, 0);
INSTANCE_WR(pt, (pte * 2) + 1, 0);
offset += 65536;
}
}
out_free:
nouveau_mem_free_block(block);
}
/*
* Ioctls
*/
int
nouveau_ioctl_mem_alloc(struct drm_device *dev, void *data,
struct drm_file *file_priv)
{
struct drm_nouveau_mem_alloc *alloc = data;
struct mem_block *block;
NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
if (alloc->flags & NOUVEAU_MEM_INTERNAL)
return -EINVAL;
block = nouveau_mem_alloc(dev, alloc->alignment, alloc->size,
alloc->flags | NOUVEAU_MEM_USER, file_priv);
if (!block)
return -ENOMEM;
alloc->map_handle=block->map_handle;
alloc->offset=block->start;
alloc->flags=block->flags;
return 0;
}
int nouveau_ioctl_mem_free(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct drm_nouveau_private *dev_priv = dev->dev_private;
struct drm_nouveau_mem_free *memfree = data;
struct mem_block *block;
NOUVEAU_CHECK_INITIALISED_WITH_RETURN;
block=NULL;
if (memfree->flags & NOUVEAU_MEM_FB)
block = find_block(dev_priv->fb_heap, memfree->offset);
else if (memfree->flags & NOUVEAU_MEM_AGP)
block = find_block(dev_priv->agp_heap, memfree->offset);
else if (memfree->flags & NOUVEAU_MEM_PCI)
block = find_block(dev_priv->pci_heap, memfree->offset);
if (!block)
return -EFAULT;
if (block->file_priv != file_priv)
return -EPERM;
nouveau_mem_free(dev, block);
return 0;
}