drm/freedreno/freedreno_bo.c

431 lines
9.3 KiB
C
Raw Normal View History

freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
/* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
/*
* Copyright (C) 2012 Rob Clark <robclark@freedesktop.org>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Authors:
* Rob Clark <robclark@freedesktop.org>
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
#include "freedreno_drmif.h"
#include "freedreno_priv.h"
static pthread_mutex_t table_lock = PTHREAD_MUTEX_INITIALIZER;
static void bo_del(struct fd_bo *bo);
/* set buffer name, and add to table, call w/ table_lock held: */
static void set_name(struct fd_bo *bo, uint32_t name)
{
bo->name = name;
/* add ourself into the handle table: */
drmHashInsert(bo->dev->name_table, name, bo);
}
/* lookup a buffer, call w/ table_lock held: */
static struct fd_bo * lookup_bo(void *tbl, uint32_t key)
{
struct fd_bo *bo = NULL;
if (!drmHashLookup(tbl, key, (void **)&bo)) {
/* found, incr refcnt and return: */
bo = fd_bo_ref(bo);
/* don't break the bucket if this bo was found in one */
list_delinit(&bo->list);
}
return bo;
}
/* allocate a new buffer object, call w/ table_lock held */
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
static struct fd_bo * bo_from_handle(struct fd_device *dev,
uint32_t size, uint32_t handle)
{
struct fd_bo *bo;
bo = dev->funcs->bo_from_handle(dev, size, handle);
if (!bo) {
struct drm_gem_close req = {
.handle = handle,
};
drmIoctl(dev->fd, DRM_IOCTL_GEM_CLOSE, &req);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
return NULL;
}
bo->dev = fd_device_ref(dev);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
bo->size = size;
bo->handle = handle;
atomic_set(&bo->refcnt, 1);
list_inithead(&bo->list);
/* add ourself into the handle table: */
drmHashInsert(dev->handle_table, handle, bo);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
return bo;
}
/* Frees older cached buffers. Called under table_lock */
drm_private void fd_cleanup_bo_cache(struct fd_device *dev, time_t time)
{
int i;
if (dev->time == time)
return;
for (i = 0; i < dev->num_buckets; i++) {
struct fd_bo_bucket *bucket = &dev->cache_bucket[i];
struct fd_bo *bo;
while (!LIST_IS_EMPTY(&bucket->list)) {
bo = LIST_ENTRY(struct fd_bo, bucket->list.next, list);
/* keep things in cache for at least 1 second: */
if (time && ((time - bo->free_time) <= 1))
break;
list_del(&bo->list);
bo_del(bo);
}
}
dev->time = time;
}
static struct fd_bo_bucket * get_bucket(struct fd_device *dev, uint32_t size)
{
int i;
/* hmm, this is what intel does, but I suppose we could calculate our
* way to the correct bucket size rather than looping..
*/
for (i = 0; i < dev->num_buckets; i++) {
struct fd_bo_bucket *bucket = &dev->cache_bucket[i];
if (bucket->size >= size) {
return bucket;
}
}
return NULL;
}
static int is_idle(struct fd_bo *bo)
{
return fd_bo_cpu_prep(bo, NULL,
DRM_FREEDRENO_PREP_READ |
DRM_FREEDRENO_PREP_WRITE |
DRM_FREEDRENO_PREP_NOSYNC) == 0;
}
static struct fd_bo *find_in_bucket(struct fd_device *dev,
struct fd_bo_bucket *bucket, uint32_t flags)
{
struct fd_bo *bo = NULL;
/* TODO .. if we had an ALLOC_FOR_RENDER flag like intel, we could
* skip the busy check.. if it is only going to be a render target
* then we probably don't need to stall..
*
* NOTE that intel takes ALLOC_FOR_RENDER bo's from the list tail
* (MRU, since likely to be in GPU cache), rather than head (LRU)..
*/
pthread_mutex_lock(&table_lock);
while (!LIST_IS_EMPTY(&bucket->list)) {
bo = LIST_ENTRY(struct fd_bo, bucket->list.next, list);
if (0 /* TODO: if madvise tells us bo is gone... */) {
list_del(&bo->list);
bo_del(bo);
bo = NULL;
continue;
}
/* TODO check for compatible flags? */
if (is_idle(bo)) {
list_del(&bo->list);
break;
}
bo = NULL;
break;
}
pthread_mutex_unlock(&table_lock);
return bo;
}
struct fd_bo *
fd_bo_new(struct fd_device *dev, uint32_t size, uint32_t flags)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
struct fd_bo *bo = NULL;
struct fd_bo_bucket *bucket;
uint32_t handle;
int ret;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
size = ALIGN(size, 4096);
bucket = get_bucket(dev, size);
/* see if we can be green and recycle: */
if (bucket) {
size = bucket->size;
bo = find_in_bucket(dev, bucket, flags);
if (bo) {
atomic_set(&bo->refcnt, 1);
fd_device_ref(bo->dev);
return bo;
}
}
ret = dev->funcs->bo_new_handle(dev, size, flags, &handle);
if (ret)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
return NULL;
pthread_mutex_lock(&table_lock);
bo = bo_from_handle(dev, size, handle);
bo->bo_reuse = 1;
pthread_mutex_unlock(&table_lock);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
return bo;
}
struct fd_bo *
fd_bo_from_handle(struct fd_device *dev, uint32_t handle, uint32_t size)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
struct fd_bo *bo = NULL;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
pthread_mutex_lock(&table_lock);
bo = lookup_bo(dev->handle_table, handle);
if (bo)
goto out_unlock;
bo = bo_from_handle(dev, size, handle);
out_unlock:
pthread_mutex_unlock(&table_lock);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
return bo;
}
struct fd_bo *
fd_bo_from_dmabuf(struct fd_device *dev, int fd)
{
struct drm_prime_handle req = {
.fd = fd,
};
int ret, size;
ret = drmIoctl(dev->fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &req);
if (ret) {
return NULL;
}
/* hmm, would be nice if we had a way to figure out the size.. */
size = 0;
return fd_bo_from_handle(dev, req.handle, size);
}
struct fd_bo * fd_bo_from_name(struct fd_device *dev, uint32_t name)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
struct drm_gem_open req = {
.name = name,
};
struct fd_bo *bo;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
pthread_mutex_lock(&table_lock);
/* check name table first, to see if bo is already open: */
bo = lookup_bo(dev->name_table, name);
if (bo)
goto out_unlock;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (drmIoctl(dev->fd, DRM_IOCTL_GEM_OPEN, &req)) {
ERROR_MSG("gem-open failed: %s", strerror(errno));
goto out_unlock;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
}
bo = lookup_bo(dev->handle_table, req.handle);
if (bo)
goto out_unlock;
bo = bo_from_handle(dev, req.size, req.handle);
if (bo)
set_name(bo, name);
out_unlock:
pthread_mutex_unlock(&table_lock);
return bo;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
}
struct fd_bo * fd_bo_ref(struct fd_bo *bo)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
atomic_inc(&bo->refcnt);
return bo;
}
void fd_bo_del(struct fd_bo *bo)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
struct fd_device *dev = bo->dev;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (!atomic_dec_and_test(&bo->refcnt))
return;
if (bo->fd >= 0) {
close(bo->fd);
bo->fd = -1;
}
pthread_mutex_lock(&table_lock);
if (bo->bo_reuse) {
struct fd_bo_bucket *bucket = get_bucket(dev, bo->size);
/* see if we can be green and recycle: */
if (bucket) {
struct timespec time;
clock_gettime(CLOCK_MONOTONIC, &time);
bo->free_time = time.tv_sec;
list_addtail(&bo->list, &bucket->list);
fd_cleanup_bo_cache(dev, time.tv_sec);
/* bo's in the bucket cache don't have a ref and
* don't hold a ref to the dev:
*/
goto out;
}
}
bo_del(bo);
out:
fd_device_del_locked(dev);
pthread_mutex_unlock(&table_lock);
}
/* Called under table_lock */
static void bo_del(struct fd_bo *bo)
{
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (bo->map)
drm_munmap(bo->map, bo->size);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
/* TODO probably bo's in bucket list get removed from
* handle table??
*/
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (bo->handle) {
struct drm_gem_close req = {
.handle = bo->handle,
};
drmHashDelete(bo->dev->handle_table, bo->handle);
if (bo->name)
drmHashDelete(bo->dev->name_table, bo->name);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_CLOSE, &req);
}
bo->funcs->destroy(bo);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
}
int fd_bo_get_name(struct fd_bo *bo, uint32_t *name)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
if (!bo->name) {
struct drm_gem_flink req = {
.handle = bo->handle,
};
int ret;
ret = drmIoctl(bo->dev->fd, DRM_IOCTL_GEM_FLINK, &req);
if (ret) {
return ret;
}
pthread_mutex_lock(&table_lock);
set_name(bo, req.name);
pthread_mutex_unlock(&table_lock);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
}
*name = bo->name;
return 0;
}
uint32_t fd_bo_handle(struct fd_bo *bo)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
return bo->handle;
}
int fd_bo_dmabuf(struct fd_bo *bo)
{
if (bo->fd < 0) {
struct drm_prime_handle req = {
.handle = bo->handle,
.flags = DRM_CLOEXEC,
};
int ret;
ret = drmIoctl(bo->dev->fd, DRM_IOCTL_PRIME_HANDLE_TO_FD, &req);
if (ret) {
return ret;
}
bo->fd = req.fd;
}
return dup(bo->fd);
}
uint32_t fd_bo_size(struct fd_bo *bo)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
return bo->size;
}
void * fd_bo_map(struct fd_bo *bo)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
if (!bo->map) {
uint64_t offset;
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
int ret;
ret = bo->funcs->offset(bo, &offset);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (ret) {
return NULL;
}
bo->map = drm_mmap(0, bo->size, PROT_READ | PROT_WRITE, MAP_SHARED,
bo->dev->fd, offset);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
if (bo->map == MAP_FAILED) {
ERROR_MSG("mmap failed: %s", strerror(errno));
bo->map = NULL;
}
}
return bo->map;
}
/* a bit odd to take the pipe as an arg, but it's a, umm, quirk of kgsl.. */
int fd_bo_cpu_prep(struct fd_bo *bo, struct fd_pipe *pipe, uint32_t op)
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
{
return bo->funcs->cpu_prep(bo, pipe, op);
freedreno: add freedreno DRM The libdrm_freedreno helper layer for use by xf86-video-freedreno, fdre (freedreno r/e library and tests for driving gpu), and eventual gallium driver for the Adreno GPU. This uses the msm gpu driver from QCOM's android kernel tree. Note that current msm kernel driver is a bit strange. It provides a DRM interface for GEM, which is basically sufficient to have DRI2 working. But it does not provide KMS. And interface to 2d and 3d cores is via different other devices (/dev/kgsl-*). This is not quite how I'd write a DRM driver, but at this stage it is useful for xf86-video-freedreno and fdre (and eventual gallium driver) to be able to work on existing kernel driver from QCOM, to allow to capture cmdstream dumps from the binary blob drivers without having to reboot. So libdrm_freedreno attempts to hide most of the crazy. The intention is that when there is a proper kernel driver, it will be mostly just changes in libdrm_freedreno to adapt the gallium driver and xf86-video-freedreno (ignoring the fbdev->KMS changes). So don't look at freedreno as an example of how to write a libdrm module or a DRM driver.. it is just an attempt to paper over a non- standard kernel driver architecture. v1: original v2: hold ref's to pending bo's (because qcom's kernel driver doesn't), various bug fixes, add ringbuffer markers so we can emit IB's to portion of ringbuffer (so that gallium driver can use a single ringbuffer for both tile cmds and draw cmds. Signed-off-by: Rob Clark <robclark@freedesktop.org>
2012-10-07 17:57:31 -06:00
}
void fd_bo_cpu_fini(struct fd_bo *bo)
{
bo->funcs->cpu_fini(bo);
}