drm/linux-core/radeon_display.c

697 lines
19 KiB
C
Raw Normal View History

/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon_drv.h"
#include "atom.h"
#include <asm/div64.h>
#include "drm_crtc_helper.h"
#define CURSOR_WIDTH 64
#define CURSOR_HEIGHT 64
int radeon_ddc_dump(struct drm_connector *connector);
static void avivo_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_radeon_private *dev_priv = dev->dev_private;
int i;
DRM_DEBUG("%d\n", radeon_crtc->crtc_id);
RADEON_WRITE(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0);
RADEON_WRITE(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
RADEON_WRITE(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
RADEON_WRITE(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
RADEON_WRITE(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
RADEON_WRITE(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
RADEON_WRITE(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
RADEON_WRITE(AVIVO_DC_LUT_RW_SELECT, radeon_crtc->crtc_id);
RADEON_WRITE(AVIVO_DC_LUT_RW_MODE, 0);
RADEON_WRITE(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f);
for (i = 0; i < 256; i++) {
RADEON_WRITE8(AVIVO_DC_LUT_RW_INDEX, i);
RADEON_WRITE(AVIVO_DC_LUT_30_COLOR,
(radeon_crtc->lut_r[i] << 22) |
(radeon_crtc->lut_g[i] << 12) |
(radeon_crtc->lut_b[i] << 2));
}
RADEON_WRITE(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id);
}
static void legacy_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_radeon_private *dev_priv = dev->dev_private;
int i;
uint32_t dac2_cntl;
dac2_cntl = RADEON_READ(RADEON_DAC_CNTL2);
if (radeon_crtc->crtc_id == 0)
dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL;
else
dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL;
RADEON_WRITE(RADEON_DAC_CNTL2, dac2_cntl);
for (i = 0; i < 256; i++) {
RADEON_WRITE8(RADEON_PALETTE_INDEX, i);
RADEON_WRITE(RADEON_PALETTE_DATA,
(radeon_crtc->lut_r[i] << 16) |
(radeon_crtc->lut_g[i] << 8) |
(radeon_crtc->lut_b[i] << 0));
}
}
void radeon_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_radeon_private *dev_priv = dev->dev_private;
if (!crtc->enabled)
return;
if (radeon_is_avivo(dev_priv))
avivo_crtc_load_lut(crtc);
else
legacy_crtc_load_lut(crtc);
}
/** Sets the color ramps on behalf of RandR */
void radeon_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (regno==0)
DRM_DEBUG("gamma set %d\n", radeon_crtc->crtc_id);
radeon_crtc->lut_r[regno] = red >> 8;
radeon_crtc->lut_g[regno] = green >> 8;
radeon_crtc->lut_b[regno] = blue >> 8;
}
static void avivo_lock_cursor(struct drm_crtc *crtc, bool lock)
{
struct drm_radeon_private *dev_priv = crtc->dev->dev_private;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
uint32_t tmp;
tmp = RADEON_READ(AVIVO_D1CUR_UPDATE + radeon_crtc->crtc_offset);
if (lock)
tmp |= AVIVO_D1CURSOR_UPDATE_LOCK;
else
tmp &= ~AVIVO_D1CURSOR_UPDATE_LOCK;
RADEON_WRITE(AVIVO_D1CUR_UPDATE + radeon_crtc->crtc_offset, tmp);
}
static int radeon_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv,
uint32_t handle,
uint32_t width,
uint32_t height)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_radeon_private *dev_priv = crtc->dev->dev_private;
struct drm_gem_object *obj;
struct drm_radeon_gem_object *obj_priv;
if (!handle) {
RADEON_WRITE(AVIVO_D1CUR_CONTROL + radeon_crtc->crtc_offset, 0);
return 0;
/* turn off cursor */
}
obj = drm_gem_object_lookup(crtc->dev, file_priv, handle);
if (!obj) {
DRM_ERROR("Cannot find cursor object %x for crtc %d\n", handle, radeon_crtc->crtc_id);
return -EINVAL;
}
obj_priv = obj->driver_private;
RADEON_WRITE(AVIVO_D1CUR_CONTROL + radeon_crtc->crtc_offset, 0);
if (radeon_is_avivo(dev_priv)) {
RADEON_WRITE(AVIVO_D1CUR_SURFACE_ADDRESS + radeon_crtc->crtc_offset,
dev_priv->fb_location + obj_priv->bo->offset);
RADEON_WRITE(AVIVO_D1CUR_SIZE + radeon_crtc->crtc_offset,
(CURSOR_WIDTH - 1) << 16 | (CURSOR_HEIGHT - 1));
RADEON_WRITE(AVIVO_D1CUR_CONTROL + radeon_crtc->crtc_offset,
AVIVO_D1CURSOR_EN | (AVIVO_D1CURSOR_MODE_24BPP << AVIVO_D1CURSOR_MODE_SHIFT));
}
mutex_lock(&crtc->dev->struct_mutex);
drm_gem_object_unreference(obj);
mutex_unlock(&crtc->dev->struct_mutex);
return 0;
}
static int radeon_crtc_cursor_move(struct drm_crtc *crtc,
int x, int y)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_radeon_private *dev_priv = crtc->dev->dev_private;
int xorigin = 0, yorigin = 0;
if (x < 0) xorigin = -x+1;
if (y < 0) yorigin = -x+1;
if (xorigin >= CURSOR_WIDTH) xorigin = CURSOR_WIDTH - 1;
if (yorigin >= CURSOR_WIDTH) yorigin = CURSOR_WIDTH - 1;
if (crtc->mode.flags & DRM_MODE_FLAG_INTERLACE)
y /= 2;
else if (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)
y *= 2;
if (radeon_is_avivo(dev_priv)) {
avivo_lock_cursor(crtc, true);
RADEON_WRITE(AVIVO_D1CUR_POSITION + radeon_crtc->crtc_offset,
((xorigin ? 0: x) << 16) |
(yorigin ? 0 : y));
RADEON_WRITE(AVIVO_D1CUR_HOT_SPOT + radeon_crtc->crtc_offset, (xorigin << 16) | yorigin);
avivo_lock_cursor(crtc, false);
}
return 0;
}
static void radeon_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
int i, j;
if (size != 256)
return;
if (crtc->fb->depth == 16) {
for (i = 0; i < 64; i++) {
if (i <= 31) {
for (j = 0; j < 8; j++) {
radeon_crtc->lut_r[i * 8 + j] = red[i] >> 8;
radeon_crtc->lut_b[i * 8 + j] = blue[i] >> 8;
}
}
for (j = 0; j < 4; j++)
radeon_crtc->lut_g[i * 4 + j] = green[i] >> 8;
}
} else {
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = red[i] >> 8;
radeon_crtc->lut_g[i] = green[i] >> 8;
radeon_crtc->lut_b[i] = blue[i] >> 8;
}
}
radeon_crtc_load_lut(crtc);
}
static void radeon_crtc_destroy(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(radeon_crtc);
}
static const struct drm_crtc_funcs radeon_crtc_funcs = {
.cursor_set = radeon_crtc_cursor_set,
.cursor_move = radeon_crtc_cursor_move,
.gamma_set = radeon_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = radeon_crtc_destroy,
};
static void radeon_crtc_init(struct drm_device *dev, int index)
{
struct drm_radeon_private *dev_priv = dev->dev_private;
struct radeon_crtc *radeon_crtc;
int i;
radeon_crtc = kzalloc(sizeof(struct radeon_crtc) + (RADEONFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
// radeon_crtc = kzalloc(sizeof(struct radeon_crtc), GFP_KERNEL);
if (radeon_crtc == NULL)
return;
drm_crtc_init(dev, &radeon_crtc->base, &radeon_crtc_funcs);
drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256);
radeon_crtc->crtc_id = index;
radeon_crtc->mode_set.crtc = &radeon_crtc->base;
radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1);
radeon_crtc->mode_set.num_connectors = 0;
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = i;
radeon_crtc->lut_g[i] = i;
radeon_crtc->lut_b[i] = i;
}
if (dev_priv->is_atom_bios && dev_priv->chip_family > CHIP_RS690)
radeon_atombios_init_crtc(dev, radeon_crtc);
else
radeon_legacy_init_crtc(dev, radeon_crtc);
}
bool radeon_legacy_setup_enc_conn(struct drm_device *dev)
{
radeon_get_legacy_connector_info_from_bios(dev);
return false;
}
bool radeon_setup_enc_conn(struct drm_device *dev)
{
struct drm_radeon_private *dev_priv = dev->dev_private;
struct radeon_mode_info *mode_info = &dev_priv->mode_info;
/* do all the mac and stuff */
struct drm_connector *connector;
struct drm_encoder *encoder;
int i;
if (dev_priv->is_atom_bios)
radeon_get_atom_connector_info_from_bios_connector_table(dev);
else
radeon_get_legacy_connector_info_from_bios(dev);
for (i = 0; i < RADEON_MAX_BIOS_CONNECTOR; i++) {
if (!mode_info->bios_connector[i].valid)
continue;
/* add a connector for this */
if (mode_info->bios_connector[i].connector_type == CONNECTOR_NONE)
continue;
connector = radeon_connector_add(dev, i);
if (!connector)
continue;
encoder = NULL;
/* if we find an LVDS connector */
if (mode_info->bios_connector[i].connector_type == CONNECTOR_LVDS) {
if (radeon_is_avivo(dev_priv))
encoder = radeon_encoder_lvtma_add(dev, i);
else
encoder = radeon_encoder_legacy_lvds_add(dev, i);
if (encoder)
drm_mode_connector_attach_encoder(connector, encoder);
}
/* DAC on DVI or VGA */
if ((mode_info->bios_connector[i].connector_type == CONNECTOR_DVI_I) ||
(mode_info->bios_connector[i].connector_type == CONNECTOR_DVI_A) ||
(mode_info->bios_connector[i].connector_type == CONNECTOR_VGA)) {
if (radeon_is_avivo(dev_priv)) {
encoder = radeon_encoder_atom_dac_add(dev, i, mode_info->bios_connector[i].dac_type, 0);
} else {
if (mode_info->bios_connector[i].dac_type == DAC_PRIMARY)
encoder = radeon_encoder_legacy_primary_dac_add(dev, i, 0);
else if (mode_info->bios_connector[i].dac_type == DAC_TVDAC)
encoder = radeon_encoder_legacy_tv_dac_add(dev, i, 0);
}
if (encoder)
drm_mode_connector_attach_encoder(connector, encoder);
}
/* TMDS on DVI */
if ((mode_info->bios_connector[i].connector_type == CONNECTOR_DVI_I) ||
(mode_info->bios_connector[i].connector_type == CONNECTOR_DVI_D)) {
if (radeon_is_avivo(dev_priv))
encoder = radeon_encoder_atom_tmds_add(dev, i, mode_info->bios_connector[i].tmds_type);
else {
if (mode_info->bios_connector[i].tmds_type == TMDS_INT)
encoder = radeon_encoder_legacy_tmds_int_add(dev, i);
else if (mode_info->bios_connector[i].dac_type == TMDS_EXT)
encoder = radeon_encoder_legacy_tmds_ext_add(dev, i);
}
if (encoder)
drm_mode_connector_attach_encoder(connector, encoder);
}
/* TVDAC on DIN */
if (mode_info->bios_connector[i].connector_type == CONNECTOR_DIN) {
if (radeon_is_avivo(dev_priv))
encoder = radeon_encoder_atom_dac_add(dev, i, mode_info->bios_connector[i].dac_type, 1);
else {
if (mode_info->bios_connector[i].dac_type == DAC_TVDAC)
encoder = radeon_encoder_legacy_tv_dac_add(dev, i, 0);
}
if (encoder)
drm_mode_connector_attach_encoder(connector, encoder);
}
}
list_for_each_entry(connector, &dev->mode_config.connector_list, head)
radeon_ddc_dump(connector);
return true;
}
int radeon_ddc_get_modes(struct radeon_connector *radeon_connector)
{
struct drm_radeon_private *dev_priv = radeon_connector->base.dev->dev_private;
struct edid *edid;
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(&radeon_connector->base, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
if (edid) {
drm_mode_connector_update_edid_property(&radeon_connector->base, edid);
ret = drm_add_edid_modes(&radeon_connector->base, edid);
kfree(edid);
return ret;
}
return -1;
}
int radeon_ddc_dump(struct drm_connector *connector)
{
struct edid *edid;
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(connector, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
if (edid) {
kfree(edid);
}
return ret;
}
static inline uint32_t radeon_div(uint64_t n, uint32_t d)
{
uint64_t x, y, result;
uint64_t mod;
n += d / 2;
mod = do_div(n, d);
return n;
}
void radeon_compute_pll(struct radeon_pll *pll,
uint64_t freq,
uint32_t *dot_clock_p,
uint32_t *fb_div_p,
uint32_t *ref_div_p,
uint32_t *post_div_p,
int flags)
{
uint32_t min_ref_div = pll->min_ref_div;
uint32_t max_ref_div = pll->max_ref_div;
uint32_t best_vco = pll->best_vco;
uint32_t best_post_div = 1;
uint32_t best_ref_div = 1;
uint32_t best_feedback_div = 1;
uint32_t best_freq = -1;
uint32_t best_error = 0xffffffff;
uint32_t best_vco_diff = 1;
uint32_t post_div;
DRM_DEBUG("PLL freq %llu\n", freq);
freq = freq * 1000;
if (flags & RADEON_PLL_USE_REF_DIV)
min_ref_div = max_ref_div = pll->reference_div;
else {
while (min_ref_div < max_ref_div-1) {
uint32_t mid=(min_ref_div+max_ref_div)/2;
uint32_t pll_in = pll->reference_freq / mid;
if (pll_in < pll->pll_in_min)
max_ref_div = mid;
else if (pll_in > pll->pll_in_max)
min_ref_div = mid;
else
break;
}
}
for (post_div = pll->min_post_div; post_div <= pll->max_post_div; ++post_div) {
uint32_t ref_div;
if ((flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1))
continue;
/* legacy radeons only have a few post_divs */
if (flags & RADEON_PLL_LEGACY) {
if ((post_div == 5) ||
(post_div == 7) ||
(post_div == 9) ||
(post_div == 10) ||
(post_div == 11))
continue;
}
for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) {
uint32_t feedback_div, current_freq, error, vco_diff;
uint32_t pll_in = pll->reference_freq / ref_div;
uint32_t min_feed_div = pll->min_feedback_div;
uint32_t max_feed_div = pll->max_feedback_div+1;
if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max)
continue;
while (min_feed_div < max_feed_div) {
uint32_t vco;
feedback_div = (min_feed_div+max_feed_div)/2;
vco = radeon_div((uint64_t)pll->reference_freq * feedback_div,
ref_div);
if (vco < pll->pll_out_min) {
min_feed_div = feedback_div+1;
continue;
} else if(vco > pll->pll_out_max) {
max_feed_div = feedback_div;
continue;
}
current_freq = radeon_div((uint64_t)pll->reference_freq * 10000 * feedback_div,
ref_div * post_div);
error = abs(current_freq - freq);
vco_diff = abs(vco - best_vco);
if ((best_vco == 0 && error < best_error) ||
(best_vco != 0 &&
(error < best_error - 100 ||
(abs(error - best_error) < 100 && vco_diff < best_vco_diff )))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (current_freq == freq) {
if (best_freq == -1) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if ((flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
}
}
if (current_freq < freq)
min_feed_div = feedback_div+1;
else
max_feed_div = feedback_div;
}
}
}
*dot_clock_p = best_freq / 10000;
*fb_div_p = best_feedback_div;
*ref_div_p = best_ref_div;
*post_div_p = best_post_div;
}
void radeon_get_clock_info(struct drm_device *dev)
{
drm_radeon_private_t *dev_priv = dev->dev_private;
struct radeon_pll *pll = &dev_priv->mode_info.pll;
int ret;
if (dev_priv->is_atom_bios)
ret = radeon_atom_get_clock_info(dev);
else
ret = radeon_combios_get_clock_info(dev);
if (ret) {
if (pll->reference_div < 2) pll->reference_div = 12;
} else {
// TODO FALLBACK
}
if (radeon_is_avivo(dev_priv)) {
pll->min_post_div = 2;
pll->max_post_div = 0x7f;
} else {
pll->min_post_div = 1;
pll->max_post_div = 12; // 16 on crtc 0??
}
pll->min_ref_div = 2;
pll->max_ref_div = 0x3ff;
pll->min_feedback_div = 4;
pll->max_feedback_div = 0x7ff;
pll->best_vco = 0;
}
static void radeon_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
radeonfb_remove(dev, fb);
drm_framebuffer_cleanup(fb);
kfree(radeon_fb);
}
static const struct drm_framebuffer_funcs radeon_fb_funcs = {
.destroy = radeon_user_framebuffer_destroy,
};
struct drm_framebuffer *radeon_user_framebuffer_create(struct drm_device *dev,
struct drm_file *filp,
struct drm_mode_fb_cmd *mode_cmd)
{
struct radeon_framebuffer *radeon_fb;
radeon_fb = kzalloc(sizeof(*radeon_fb), GFP_KERNEL);
if (!radeon_fb)
return NULL;
drm_framebuffer_init(dev, &radeon_fb->base, &radeon_fb_funcs);
drm_helper_mode_fill_fb_struct(&radeon_fb->base, mode_cmd);
if (filp) {
radeon_fb->obj = drm_gem_object_lookup(dev, filp,
mode_cmd->handle);
if (!radeon_fb->obj) {
kfree(radeon_fb);
return NULL;
}
drm_gem_object_unreference(radeon_fb->obj);
}
return &radeon_fb->base;
}
static const struct drm_mode_config_funcs radeon_mode_funcs = {
.fb_create = radeon_user_framebuffer_create,
.fb_changed = radeonfb_probe,
};
int radeon_modeset_init(struct drm_device *dev)
{
drm_radeon_private_t *dev_priv = dev->dev_private;
static struct card_info card;
size_t size;
int num_crtc = 2, i;
int ret;
drm_mode_config_init(dev);
dev->mode_config.funcs = (void *)&radeon_mode_funcs;
if (radeon_is_avivo(dev_priv)) {
dev->mode_config.max_width = 8192;
dev->mode_config.max_height = 8192;
} else {
dev->mode_config.max_width = 4096;
dev->mode_config.max_height = 4096;
}
dev->mode_config.fb_base = dev_priv->fb_aper_offset;
/* allocate crtcs - TODO single crtc */
for (i = 0; i < num_crtc; i++) {
radeon_crtc_init(dev, i);
}
/* okay we should have all the bios connectors */
ret = radeon_setup_enc_conn(dev);
if (!ret)
return ret;
drm_helper_initial_config(dev, false);
return 0;
}
int radeon_load_modeset_init(struct drm_device *dev)
{
int ret;
ret = radeon_modeset_init(dev);
return ret;
}
void radeon_modeset_cleanup(struct drm_device *dev)
{
drm_mode_config_cleanup(dev);
}