With the interrupt enable/disable using only the mask register, it was wrong
to use the enable register to detect which pipes had vblank detection
turned on. Also, as we keep a local copy of the mask register around, and
MSI machines smack the hardware during the interrupt handler, it is more
efficient and more correct to use the local copy.
Noting that the interrupt mask register was more reliable than the interrupt
enable register for managing interrupts in user_irq_on/user_irq_off, this
patch replaces the remaining IER frobbing with IMR instead.
The test which exposes IER related failures is:
$ glxgears & glxgears & glxgears
(reposition the glxgears windows away from the upper left corner)
$ while :; do x11perf -rect100 -reps 800 -repeat 1; sleep 1; done &
$ while :; do runoa; runet; done &
Lots of conflicts, seems to load ok, but I'm sure some bugs snuck in.
Conflicts:
linux-core/drmP.h
linux-core/drm_lock.c
linux-core/i915_gem.c
shared-core/drm.h
shared-core/i915_dma.c
shared-core/i915_drv.h
shared-core/i915_irq.c
The interrupt identity register must be writen before any work occurs lest
we drop an interrupt on the floor. This patch just shuffles code around to
make sure that IIR is written as early as possible.
In the short-circuit code for the breadcrumb already being new enough, we
need to update the sarea_priv copy of the breadcrumb just as if we had
waited. Otherwise userland error checking will notice that we returned
too early based on its wrong information, and call wait_irq again (leading
to spinning until someone else comes along and updates the sarea_priv).
This bug was hidden when we had interrupt masking disabled, such as in
master, since the interrupt handler would update sarea_priv.
This was insufficient once we started masking interrupts to only when someone
was waiting for them (and would thus retire requests themselves). It was
replaced by the retire_timer.
Use new GEM based ring buffer initialization. Still need to init GEM & use it
for framebuffer allocation etc.
Conflicts:
shared-core/i915_dma.c
shared-core/i915_drv.h
This requires that the X Server use the execbuf interface for buffer
submission, as it no longer has direct access to the ring. This is
therefore a flag day for the gem interface.
This also adds enter/leavevt ioctls for use by the X Server. These would
get stubbed out in a modesetting implementation, but are required while
in an environment where the device's state is only managed by the DRM while
X has the VT.
Okay we have crtc, encoder and connectors.
No more outputs exposed beyond driver internals
I've broken intel tv connector stuff.
Really for TV we should have one TV connector, with a sub property for the
type of signal been driven over it
Use subclassing from the drivers to allocate the objects. This saves
two objects being allocated for each crtc/output and generally makes
exit paths cleaner.
This splits a lot of the core modesetting code out into a file of
helper functions, that are only called from themselves and/or the driver.
The driver gets called into more often or can call these functions from itself
if it is a helper using driver.
I've broken framebuffer resize doing this but I didn't like the API for that
in any case.
The interrupt enable register cannot be used to temporarily disable
interrupts, instead use the interrupt mask register.
Note that this change means that a pile of buffers will be left stuck on the
chip as the final interrupts will not be recognized to come and drain things.
There are now 3 lists. Active is buffers currently in the ringbuffer.
Flushing is not in the ringbuffer, but needs a flush before unbinding.
Inactive is as before. This prevents object_free → unbind →
wait_rendering → object_reference and a kernel oops about weird refcounting.
This also avoids an synchronous extra flush and wait when freeing a buffer
which had a write_domain set (such as a temporary rendered to and then from
using the 2d engine). It will sit around on the flushing list until the
appropriate flush gets emitted, or we need the GTT space for another
operation.
It would be nice if one day the DRM driver was the canonical source for
register definitions and core macros. To that end, this patch cleans
things up quite a bit, removing redundant definitions (some with
different names referring to the same register) and generally tidying up
the header file.
In order to avoid recursive ->detect->interrupt->detect->interrupt->...
we need to disable TV hotplug interrupts in
intel_tv.c:intel_tv_detect_type. We also need to enable the TV interrupt
detection and hotplug sequence properly in i915_irq.c.
On my 865G machine, it seems the CPU will receive interrupt before
irq_postinstall is called. This will cause kernel oops because vblank is not
inited at that time. Clear interrupt status before install seems fixing this
problem.
Signed-off-by: Hong Liu <hong.liu@intel.com>
The batchbuffer submission paths were fixed to use the 965-specific command,
but the vblank tasklet was not. When the older version is sent, the 965 will
lock up.
My 965GM gets interrupts stuck when using the old PIPE_VBLANK interrupt.
Switch to the PIPE_EVENT interrupt mechanism, and set the PIPE*STAT
registers to use START_VBLANK on 965 and VBLANK on previous chips.
We need to return an accurate vblank count to the callers of
->get_vblank_counter, and in the Intel case the actual frame count
register isn't udpated until the next active line is displayed, so we
need to return one more than the frame count register if we're currently
in a vblank period.
However, none of the various ways of doing this is working yet, so
disable the logic for now. This may result in a few missed events, but
should fix the hangs some people have seen due to the current code
tripping the wraparound logic in drm_update_vblank_count.
The frame count registers don't increment until the start of the next
frame, so make sure we return an incremented count if called during the
actual vblank period.
Ack the IRQs correctly (PIPExSTAT first followed by IIR). Don't read
vblank counter registers on disabled pipes (might hang otherwise). And
deal with flipped pipe/plane mappings if present.