The MI_WAIT_FOR_EVENT instruction does not support waiting for several events
at once, so this should fix the lockups with page flipping when both pipes are
enabled.
Always use dev_priv->sarea_priv->pf_current_page directly. This allows clients
to modify it as well while they hold the HW lock, e.g. in order to sync pages
between pipes.
The assumption is that synchronous flips are not isolated usually, and waiting
for all of them could result in stalling the pipeline for long periods of time.
Also use i915_emit_mi_flush() instead of an old-fashioned way to achieve the
same effect.
graphics objects:
- No longer takes flags/dmaobj parameters, requires some major changes
to the ddx to setup the object through the FIFO. This change is
likely to cause breakages on some cards (tested on NV05,NV28,NV35,
NV40 and NV4E).
dma objects:
- now takes a "class" parameter, not really used yet but we may need
it at some point.
- parameters are checked, so clients can't randomly create DMA objects
pointing at whatever they feel like.
misc:
- Added FB_SIZE/AGP_SIZE getparams
- Read PFIFO_INTR in PFIFO irq handler, not PMC_INTR
- Dump PGRAPH trap info on PGRAPH_INTR_NOTIFY if NSOURCE isn't
NOTIFICATION_PENDING.
Unfortunately, emitting asynchronous flips during vertical blank results in
tearing. So we have to wait for the previous vertical blank and emit a
synchronous flip.
Leave it to the client to wait for the flip to complete when necessary,
but wait for a previous flip to complete before emitting another one. This
should help avoid unnecessary stalling of the ring due to pending flips.
Call i915_do_cleanup_pageflip() unconditionally in preclose.
Add refcounting of user waiters to the DRM hardware lock, so that we can use the
DRM_LOCK_CONT flag more conservatively.
Also add a kernel waiter refcount that if nonzero transfers the lock for the kernel context,
when it is released. This is useful when waiting for idle and can be used
for very simple fence object driver implementations for the new memory manager.
It also resolves the AIGLX startup deadlock for the sis and the via drivers.
i810, i830 still require that the hardware lock is really taken so the deadlock remains
for those two. I'm not sure about ffb. Anyone familiar with that code?
Memory types are either fixed (on-card or pre-bound AGP) or not fixed
(dynamically bound) to an aperture. They also carry information about:
1) Whether they can be mapped cached.
2) Whether they are at all mappable.
3) Whether they need an ioremap to be accessible from kernel space.
In this way VRAM memory and, for example, pre-bound AGP appear
identical to the memory manager.
This also makes support for unmappable VRAM simple to implement.