It's not really a graphics memory allocator, just something to track ranges
of address space. It doesn't involve actual allocation, and was consuming
some desired namespace.
Make DRM devices use real Linux devices instead of class devices, which are
going away. While we're at it, clean up some of the interfaces to take
struct drm_device * or struct device * and use the global drm_class where
needed instead of passing it around.
Add refcounting of user waiters to the DRM hardware lock, so that we can use the
DRM_LOCK_CONT flag more conservatively.
Also add a kernel waiter refcount that if nonzero transfers the lock for the kernel context,
when it is released. This is useful when waiting for idle and can be used
for very simple fence object driver implementations for the new memory manager.
It also resolves the AIGLX startup deadlock for the sis and the via drivers.
i810, i830 still require that the hardware lock is really taken so the deadlock remains
for those two. I'm not sure about ffb. Anyone familiar with that code?
Initialize the spinlock unconditionally when struct drm_device is filled in,
and return early in drm_locked_tasklet() if the driver doesn't support IRQs.
Actually make the existing ioctls for adding and removing drawables do
something useful, and add another ioctl for the X server to update drawable
information. The only kind of drawable information tracked so far is cliprects.
(cherry picked from 29598e5253 commit)
Actually make the existing ioctls for adding and removing drawables do
something useful, and add another ioctl for the X server to update drawable
information. The only kind of drawable information tracked so far is cliprects.
0x10000000 to 0x90000000 in PAGE_SIZE increments.
Implement hashed map lookups.
This potentially breaks both 2D and 3D drivers. If so, the corresponding
2D and 3D driver should be fixed, and it's corresponding drm device driver
should have its major bumped as soon as possible.
Bump sis and via drm device driver majors.
The SiS and Unichrome 3D drivers are fixed in Mesa CVS HEAD and
mesa_6_4_branch.
understandable: preinit -> load postinit -> (removed) presetup ->
firstopen postsetup -> (removed) open_helper -> open prerelease ->
preclose free_filp_priv -> postclose pretakedown -> lastclose
postcleanup -> unload release -> reclaim_buffers_locked version ->
(removed)
postinit and version were replaced with generic code in the Linux DRM
(drivers now set their version numbers and description in the driver
structure, like on BSD). postsetup wasn't used at all. Fixes the savage
hooks for initializing and tearing down mappings at the right times.
Testing involved at least starting X, running glxgears, killing
glxgears, exiting X, and repeating.
Tested on: FreeBSD (g200, g400, r200, r128) Linux (r200, savage4)