We depend on the VM fully now for memory protection, separate DMA objects
for VRAM and GART are unneccesary. However, until the next interface break
(soon) a client can't depend on the objects being the same and must still
call NV_OBJ_SET_DMA_* methods appropriately.
This avoids seeing garbage from engine setup etc before X gets around
to pointing the CRTCs at a new scanout buffer. Not actually a noticable
problem before G80 as PRAMIN is forced to the end of VRAM by the hardware
already.
Noting that the interrupt mask register was more reliable than the interrupt
enable register for managing interrupts in user_irq_on/user_irq_off, this
patch replaces the remaining IER frobbing with IMR instead.
The test which exposes IER related failures is:
$ glxgears & glxgears & glxgears
(reposition the glxgears windows away from the upper left corner)
$ while :; do x11perf -rect100 -reps 800 -repeat 1; sleep 1; done &
$ while :; do runoa; runet; done &
While waiting for the hardware to idle on leavevt or lastclose, poll
for the sync sequence number instead of waiting for an interrupt. This
allows the code to bail if the hardware hangs for some reason. Also, this
avoids issues with signals as the exisiting wait function is interruptible.
find_or_create_page doesn't quite set up pages correctly; any newly created
pages aren't hooked into the shmem object quite right; user space mmaps of
those pages end up mapping pages full of zeros which then get written to the
real pages inappropriately. This patch requires that the kernel export
shmem_getpage.
When a software fallback has completed, usermode must notify the kernel so
that any scanout buffers can be synchronized. This ioctl should be called
whenever a fallback completes to flush CPU and chipset caches.
Lots of conflicts, seems to load ok, but I'm sure some bugs snuck in.
Conflicts:
linux-core/drmP.h
linux-core/drm_lock.c
linux-core/i915_gem.c
shared-core/drm.h
shared-core/i915_dma.c
shared-core/i915_drv.h
shared-core/i915_irq.c
Normally when X is running, panic messages will be invisible and the machine
will just appear to hard hang. This patch adds support for switching back to
the fbcon framebuffer on panic (through the use of a panic notifier
registration) so we can see what happened.
Note that in order to be really useful, X will have to run its VT in something
other than KD_GRAPHICS mode. Also, not all kernel errors result in panics,
some go through BUG() which may trigger another type of event, not resulting in
a switch.
This fixes registration when MSI is set up after the stub function fills in
dev->irq. Otherwise /proc/interrupts would report attachment to the fasteoi
interrupt. dev->irq is still exposed (and updated at IRQ setup)
for the drivers that use it for whatever reason.
In leavevt_ioctl, queue an MI_FLUSH and then block waiting for it to
complete. This will empty the active and flushing lists. That leaves only
the inactive list to evict.
Pin/unpin need to know whether to remove/add objects from the inactive list,
inactive objects cannot be in any GPU write domain as those would be on the
flushing list instead. However, inactive objects may be in the CPU write
domain.
Now that gem_object_unbind waits for rendering to complete, objects should
not be active when they are being pulled from the GTT. BUG_ON if this is
broken.
Record the last execbuffer sequence for each client.
Record that sequence in the throttle ioctl as the 'throttle sequence'.
Wait for the last throttle sequence in the throttle ioctl.
When i915_wait_request clears object from the active list, it may end up
freeing them and not moving them to the inactive list. This ends up
unbinding objects from the GTT without there ever being new objects visible
to i915_gem_evict_something on the inactive list. As the only success
condition required the presence of objects on the inactive list, this would
falsely assume that no GTT space had been made available, and end up
returning -ENOMEM to the application.
The interrupt identity register must be writen before any work occurs lest
we drop an interrupt on the floor. This patch just shuffles code around to
make sure that IIR is written as early as possible.
We want request retirement to occur about once a second when the request
queue is non-empty. This was done with a timer that queued a work_struct,
using a delayed_work instead makes a lot more sense.