When the mapping is clean this flag will be set. This can be used
by a driver to save migrating and allocating pages for an object
that will first be used in VRAM.
This is an initial import of the atom bios parser with modesetting support
for r500 hw using atombios. It also includes a simple memory manager
layer that translates a radeon GEM style interface onto TTM internally.
So far this memory manager has only been used for pinned object allocation
for the DDX to test modesetting.
It's not really a graphics memory allocator, just something to track ranges
of address space. It doesn't involve actual allocation, and was consuming
some desired namespace.
PCI- or high memory.
This is substantially more efficient than drm_bo_kmap,
since the mapping only lives on a single processor.
Unmapping is done use kunmap_atomic(). Flushes only a single tlb() entry.
Add a support utility int drm_bo_pfn_prot() that returns the
pfn and desired page protection for a given bo offset.
This is all intended for relocations in bound TTMS or vram.
Mapping-accessing-unmapping must be atomic, either using preempt_xx() macros
or a spinlock.
sequence number may actually turn up before the corresponding fence
object has been queued on the ring.
Fence drivers can use this member to determine whether a
sequence number must be re-reported.
I couldn't figure out what drm_bo_type_dc was for; Dave Airlie finally clued
me in that it was the 'normal' buffer objects with kernel allocated pages
that could be mmapped from the drm device file.
I thought that 'drm_bo_type_device' was a more descriptive name.
I also added a bunch of comments describing the use of the type enum values and
the functions that use them.
Flags pending validation were stored in a misleadingly named field, 'mask'.
As 'mask' is already used to indicate pieces of a flags field which are
changing, it seems better to use a name reflecting the actual purpose of
this field. I chose 'proposed_flags' as they may not actually end up in
'flags', and in an case will be modified when they are moved over.
This affects the API, but not ABI of the user-mode interface.
Previously, dummy_read_page was used only for read-only user allocations; it
filled in pages that were not present in the user address map (presumably,
these were allocated but never written to pages).
This patch allows them to be used for read-only ttms allocated from the
kernel, so that applications can over-allocate buffers without forcing every
page to be allocated.
I'm hoping to use the dummy_read_page for kernel allocated buffers to avoid
allocating extra pages for read-only buffers (like vertex and batch buffers).
This also eliminates the 'write' parameter to drm_ttm_set_user and just
has DRM_TTM_PAGE_WRITE passed into drm_ttm_create.
Aside from changing drm_bind_ttm to drm_ttm_bind, this patch
adds only documentation and fixes the functions inside drm_ttm.c
to all be prefixed with drm_ttm_.
Document parameters and usage for drm_bo_handle_validate. Change parameter
order to match drm_bo_do_validate (fence_class has been moved to after
flags, hint and mask values). Existing users of this function have been
changed, but out-of-tree users must be modified separately.
Add comments about the parameters to drm_bo_do_validate, along
with comments for the DRM_BO_HINT options. Remove the 'do_wait'
parameter as it is duplicated by DRM_BO_HINT_DONT_BLOCK.
Creating a ttm was done with drm_ttm_init while destruction was done with
drm_destroy_ttm. Renaming these to drm_ttm_create and drm_ttm_destroy makes
their use clearer. Passing page_flags to the create function will allow that
to know whether user or kernel pages are needed, with the goal of allowing
kernel ttms to be saved for later reuse.