The current code can sleep in an interrupt handler, that is bad. So
instead if we can't grab the lock, flag it and run the tasklet on
unlock.
Signed-off-by: Robert Noland <rnoland@2hip.net>
This seems to be the key to getting at least some radeon
cards working. Most, if not all drivers need it enabled,
so just request it once the driver has attached.
Previously, the lock would get released on the first close by the X Server
(during AIGLX setup), and the Radeon driver would then hang in initialization
due to unexpected failure in DRM calls that required the lock to be held.
Based on a patch by Kostik Belousov.
The data is now in kernel space, copied in/out as appropriate according to the
This results in DRM_COPY_{TO,FROM}_USER going away, and error paths to deal
with those failures. This also means that XFree86 4.2.0 support for i810 DRM
is lost.
As a fallout, replace filp storage with file_priv storage for "unique
identifier of a client" all over the DRM. There is a 1:1 mapping, so this
should be a noop. This could be a minor performance improvement, as everything
on Linux dereferenced filp to get file_priv anyway, while only the mmap ioctls
went the other direction.
This was used to make all ioctl handlers return -errno on linux and errno on
*BSD. Instead, just return -errno in shared code, and flip sign on return from
shared code to *BSD code.
drm_mtrr_{add,del} for handling the MTRR setup. Still has a LOR issue
with DRM_VERIFYAREA_READ/DRM_COPY_FROM_USER_UNCHECKED in savage_bci.c
-- this won't work with the fine-grained locking in use, and just doing
a single copyin to a temporary will probably work fine. Also note that
the module leaks approximately 4 kb on unload.
up a good bit, I think. Also, remove the agp_uninit() function which
has lain around as a noop for years now. The FreeBSD DRM is now all
compiling, with the exception of via. One known sleeping-with-lock-held
issue remains.
allocate the resource RF_ACTIVE, pull out the appropriate value, and
return it. However, allocating large framebuffers RF_ACTIVE would run
the system out of KVA, and this also left open the possibility of the
resource getting moved after getting the offset. Instead, when either
of these are called, allocate the resource if it isn't allocated
already (non-RF_ACTIVE) and store it in the DRM device, to be cleaned
up on lastclose.
understandable: preinit -> load postinit -> (removed) presetup ->
firstopen postsetup -> (removed) open_helper -> open prerelease ->
preclose free_filp_priv -> postclose pretakedown -> lastclose
postcleanup -> unload release -> reclaim_buffers_locked version ->
(removed)
postinit and version were replaced with generic code in the Linux DRM
(drivers now set their version numbers and description in the driver
structure, like on BSD). postsetup wasn't used at all. Fixes the savage
hooks for initializing and tearing down mappings at the right times.
Testing involved at least starting X, running glxgears, killing
glxgears, exiting X, and repeating.
Tested on: FreeBSD (g200, g400, r200, r128) Linux (r200, savage4)
driver's preinit routine, and by using DRM_COPY_TO_USER_IOCTL when
copying out to an ioctl's data pointer. Pulled from the latest version
of my drm-hook-rename.diff and only compile-tested after that.
This patch adds serveral new ioctls and a new query to get_param query to
support PCI MGA cards.
Two ioctls were added to implement interrupt based waiting. With this
change, the client-side driver no longer needs to map the primary DMA
region or the MMIO region. Previously, end-of-frame waiting was done by
busy waiting in the client-side driver until one of the MMIO registers
(the current DMA pointer) matched a pointer to the end of primary DMA
space. By using interrupts, the busy waiting and the extra mappings are
removed.
A third ioctl was added to bootstrap DMA. This ioctl, which is used by the
X-server, moves a *LOT* of code from the X-server into the kernel. This
allows the kernel to do whatever needs to be done to setup DMA buffers.
The entire process and the locations of the buffers are hidden from
user-mode.
Additionally, a get_param query was added to differentiate between G4x0
cards and G550 cards. A gap was left in the numbering sequence so that,
if needed, G450 cards could be distinguished from G400 cards. According
to Ville Syrjälä, the G4x0 cards and the G550 cards handle
anisotropic filtering differently. This seems the most compatible way
to let the client-side driver know which card it's own. Doing this very
small change now eliminates the need to bump the DRM minor version
twice.
http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2
A number of ioctl handlers in linux-core were also modified so that they
could be called in-kernel. In these cases, the in-kernel callable
version kept the existing name (e.g., drm_agp_acquire) and the ioctl
handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl).
This patch also replaces the drm_agp_do_release function with
drm_agp_release. drm_agp_release (drm_core_agp_release in the previous
patch) is very similar to drm_agp_do_release, and I saw no reason to
have both.
This commit *breaks the build* on BSD. Eric said that he would make the
required updates to the BSD side soon.
Xorg bug: 3259 Reviewed by: Eric Anholt
FreeBSD. Add drm_get_resource_{start|len} so linux-specific stuff
doesn't need to be in shared code.
- Fix mach64 build by using __DECONST to work around passing a const
pointer to useracc, which is unfortunately not marked const.
- Get rid of a lot of maplist code by not having dev->maplist be a pointer,
and by sticking the link entries directly in drm_local_map_t rather
than having a separate structure for the linked list.
- Factor out map uninit and removal into its own routine, rather than
duplicating in both drm_takedown() and drm_rmmap().
- Hook up more driver functions, and correct FreeBSD-specific bits of
radeon_cp.c, making radeon work.
- Baby steps towards using bus_space as we should.
ioctls with dev_lock, which is a major step toward being able to remove
Giant. Covers some new pieces (dev->unique*) in the core, and avoids
one call down into system internals with the drm lock held, which is
usually bad (FreeBSD LOR #23, #27).