/* * Copyright © 2008 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "drmP.h" #include "drm.h" #include "i915_drm.h" #include "i915_drv.h" #define WATCH_COHERENCY 0 #define WATCH_BUF 0 #define WATCH_EXEC 0 #define WATCH_LRU 0 #define WATCH_RELOC 0 static void i915_gem_object_set_domain(struct drm_gem_object *obj, uint32_t read_domains, uint32_t write_domain); int i915_gem_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_init *args = data; mutex_lock(&dev->struct_mutex); if (args->gtt_start >= args->gtt_end || (args->gtt_start & (PAGE_SIZE - 1)) != 0 || (args->gtt_end & (PAGE_SIZE - 1)) != 0) { mutex_unlock(&dev->struct_mutex); return -EINVAL; } drm_memrange_init(&dev_priv->mm.gtt_space, args->gtt_start, args->gtt_end - args->gtt_start); mutex_unlock(&dev->struct_mutex); return 0; } static void i915_gem_object_free_page_list(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = obj->driver_private; int page_count = obj->size / PAGE_SIZE; int i; if (obj_priv->page_list == NULL) return; for (i = 0; i < page_count; i++) if (obj_priv->page_list[i] != NULL) page_cache_release(obj_priv->page_list[i]); drm_free(obj_priv->page_list, page_count * sizeof(struct page *), DRM_MEM_DRIVER); obj_priv->page_list = NULL; } static void i915_gem_object_move_to_active(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = obj->driver_private; /* Add a reference if we're newly entering the active list. */ if (!obj_priv->active) { drm_gem_object_reference(obj); obj_priv->active = 1; } /* Move from whatever list we were on to the tail of execution. */ list_move_tail(&obj_priv->list, &dev_priv->mm.active_list); } static void i915_gem_object_move_to_inactive(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = obj->driver_private; if (obj_priv->pin_count != 0) list_del_init(&obj_priv->list); else list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list); if (obj_priv->active) { obj_priv->active = 0; drm_gem_object_unreference(obj); } } /** * Creates a new sequence number, emitting a write of it to the status page * plus an interrupt, which will trigger i915_user_interrupt_handler. * * Must be called with struct_lock held. * * Returned sequence numbers are nonzero on success. */ static uint32_t i915_add_request(struct drm_device *dev, uint32_t flush_domains) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_request *request; uint32_t seqno; RING_LOCALS; request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER); if (request == NULL) return 0; /* Grab the seqno we're going to make this request be, and bump the * next (skipping 0 so it can be the reserved no-seqno value). */ seqno = dev_priv->mm.next_gem_seqno; dev_priv->mm.next_gem_seqno++; if (dev_priv->mm.next_gem_seqno == 0) dev_priv->mm.next_gem_seqno++; BEGIN_LP_RING(4); OUT_RING(CMD_STORE_DWORD_IDX); OUT_RING(I915_GEM_HWS_INDEX << STORE_DWORD_INDEX_SHIFT); OUT_RING(seqno); OUT_RING(GFX_OP_USER_INTERRUPT); ADVANCE_LP_RING(); DRM_DEBUG("%d\n", seqno); request->seqno = seqno; request->emitted_jiffies = jiffies; request->flush_domains = flush_domains; list_add_tail(&request->list, &dev_priv->mm.request_list); return seqno; } /** * Command execution barrier * * Ensures that all commands in the ring are finished * before signalling the CPU */ uint32_t i915_retire_commands(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t cmd = CMD_MI_FLUSH | MI_NO_WRITE_FLUSH; uint32_t flush_domains = 0; RING_LOCALS; /* The sampler always gets flushed on i965 (sigh) */ if (IS_I965G(dev)) flush_domains |= DRM_GEM_DOMAIN_I915_SAMPLER; BEGIN_LP_RING(2); OUT_RING(cmd); OUT_RING(0); /* noop */ ADVANCE_LP_RING(); return flush_domains; } /** * Moves buffers associated only with the given active seqno from the active * to inactive list, potentially freeing them. */ static void i915_gem_retire_request(struct drm_device *dev, struct drm_i915_gem_request *request) { drm_i915_private_t *dev_priv = dev->dev_private; if (request->flush_domains != 0) { struct drm_i915_gem_object *obj_priv, *next; /* First clear any buffers that were only waiting for a flush * matching the one just retired. */ list_for_each_entry_safe(obj_priv, next, &dev_priv->mm.flushing_list, list) { struct drm_gem_object *obj = obj_priv->obj; if (obj->write_domain & request->flush_domains) { obj->write_domain = 0; i915_gem_object_move_to_inactive(obj); } } } /* Move any buffers on the active list that are no longer referenced * by the ringbuffer to the flushing/inactive lists as appropriate. */ while (!list_empty(&dev_priv->mm.active_list)) { struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; obj_priv = list_first_entry(&dev_priv->mm.active_list, struct drm_i915_gem_object, list); obj = obj_priv->obj; /* If the seqno being retired doesn't match the oldest in the * list, then the oldest in the list must still be newer than * this seqno. */ if (obj_priv->last_rendering_seqno != request->seqno) return; #if WATCH_LRU DRM_INFO("%s: retire %d moves to inactive list %p\n", __func__, request->seqno, obj); #endif if (obj->write_domain != 0) { list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list); } else { i915_gem_object_move_to_inactive(obj); } } } /** * Returns true if seq1 is later than seq2. */ static int i915_seqno_passed(uint32_t seq1, uint32_t seq2) { return (int32_t)(seq1 - seq2) >= 0; } static uint32_t i915_get_gem_seqno(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX); } /** * This function clears the request list as sequence numbers are passed. */ void i915_gem_retire_requests(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t seqno; seqno = i915_get_gem_seqno(dev); while (!list_empty(&dev_priv->mm.request_list)) { struct drm_i915_gem_request *request; uint32_t retiring_seqno; request = list_first_entry(&dev_priv->mm.request_list, struct drm_i915_gem_request, list); retiring_seqno = request->seqno; if (i915_seqno_passed(seqno, retiring_seqno)) { i915_gem_retire_request(dev, request); list_del(&request->list); drm_free(request, sizeof(*request), DRM_MEM_DRIVER); } else break; } } /** * Waits for a sequence number to be signaled, and cleans up the * request and object lists appropriately for that event. */ int i915_wait_request(struct drm_device *dev, uint32_t seqno) { drm_i915_private_t *dev_priv = dev->dev_private; int ret = 0; BUG_ON(seqno == 0); if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) { i915_user_irq_on(dev_priv); ret = wait_event_interruptible(dev_priv->irq_queue, i915_seqno_passed(i915_get_gem_seqno(dev), seqno)); i915_user_irq_off(dev_priv); } /* Directly dispatch request retiring. While we have the work queue * to handle this, the waiter on a request often wants an associated * buffer to have made it to the inactive list, and we would need * a separate wait queue to handle that. */ if (ret == 0) i915_gem_retire_requests(dev); return ret; } static void i915_gem_flush(struct drm_device *dev, uint32_t invalidate_domains, uint32_t flush_domains) { drm_i915_private_t *dev_priv = dev->dev_private; uint32_t cmd; RING_LOCALS; #if WATCH_EXEC DRM_INFO("%s: invalidate %08x flush %08x\n", __func__, invalidate_domains, flush_domains); #endif if (flush_domains & DRM_GEM_DOMAIN_CPU) drm_agp_chipset_flush(dev); if ((invalidate_domains|flush_domains) & ~DRM_GEM_DOMAIN_CPU) { /* * read/write caches: * * DRM_GEM_DOMAIN_I915_RENDER is always invalidated, but is * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is * also flushed at 2d versus 3d pipeline switches. * * read-only caches: * * DRM_GEM_DOMAIN_I915_SAMPLER is flushed on pre-965 if * MI_READ_FLUSH is set, and is always flushed on 965. * * DRM_GEM_DOMAIN_I915_COMMAND may not exist? * * DRM_GEM_DOMAIN_I915_INSTRUCTION, which exists on 965, is * invalidated when MI_EXE_FLUSH is set. * * DRM_GEM_DOMAIN_I915_VERTEX, which exists on 965, is * invalidated with every MI_FLUSH. * * TLBs: * * On 965, TLBs associated with DRM_GEM_DOMAIN_I915_COMMAND * and DRM_GEM_DOMAIN_CPU in are invalidated at PTE write and * DRM_GEM_DOMAIN_I915_RENDER and DRM_GEM_DOMAIN_I915_SAMPLER * are flushed at any MI_FLUSH. */ cmd = CMD_MI_FLUSH | MI_NO_WRITE_FLUSH; if ((invalidate_domains|flush_domains) & DRM_GEM_DOMAIN_I915_RENDER) cmd &= ~MI_NO_WRITE_FLUSH; if (!IS_I965G(dev)) { /* * On the 965, the sampler cache always gets flushed * and this bit is reserved. */ if (invalidate_domains & DRM_GEM_DOMAIN_I915_SAMPLER) cmd |= MI_READ_FLUSH; } if (invalidate_domains & DRM_GEM_DOMAIN_I915_INSTRUCTION) cmd |= MI_EXE_FLUSH; #if WATCH_EXEC DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd); #endif BEGIN_LP_RING(2); OUT_RING(cmd); OUT_RING(0); /* noop */ ADVANCE_LP_RING(); } } /** * Ensures that all rendering to the object has completed and the object is * safe to unbind from the GTT or access from the CPU. */ static int i915_gem_object_wait_rendering(struct drm_gem_object *obj) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = obj->driver_private; int ret; /* If there are writes queued to the buffer, flush and * create a new seqno to wait for. */ if (obj->write_domain & ~(DRM_GEM_DOMAIN_CPU)) { uint32_t write_domain = obj->write_domain; #if WATCH_BUF DRM_INFO("%s: flushing object %p from write domain %08x\n", __func__, obj, write_domain); #endif i915_gem_flush(dev, 0, write_domain); obj->write_domain = 0; i915_gem_object_move_to_active(obj); obj_priv->last_rendering_seqno = i915_add_request(dev, write_domain); BUG_ON(obj_priv->last_rendering_seqno == 0); #if WATCH_LRU DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj); #endif } /* If there is rendering queued on the buffer being evicted, wait for * it. */ if (obj_priv->active) { #if WATCH_BUF DRM_INFO("%s: object %p wait for seqno %08x\n", __func__, obj, obj_priv->last_rendering_seqno); #endif ret = i915_wait_request(dev, obj_priv->last_rendering_seqno); if (ret != 0) return ret; } return 0; } /** * Unbinds an object from the GTT aperture. */ static void i915_gem_object_unbind(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = obj->driver_private; #if WATCH_BUF DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj); DRM_INFO("gtt_space %p\n", obj_priv->gtt_space); #endif if (obj_priv->gtt_space == NULL) return; /* Move the object to the CPU domain to ensure that * any possible CPU writes while it's not in the GTT * are flushed when we go to remap it. This will * also ensure that all pending GPU writes are finished * before we unbind. */ i915_gem_object_set_domain (obj, DRM_GEM_DOMAIN_CPU, DRM_GEM_DOMAIN_CPU); if (obj_priv->agp_mem != NULL) { drm_unbind_agp(obj_priv->agp_mem); drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE); obj_priv->agp_mem = NULL; } i915_gem_object_free_page_list(obj); drm_memrange_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; /* Remove ourselves from the LRU list if present. */ if (!list_empty(&obj_priv->list)) { list_del_init(&obj_priv->list); if (obj_priv->active) { DRM_ERROR("Failed to wait on buffer when unbinding, " "continued anyway.\n"); obj_priv->active = 0; drm_gem_object_unreference(obj); } } } #if WATCH_BUF | WATCH_EXEC static void i915_gem_dump_page(struct page *page, uint32_t start, uint32_t end, uint32_t bias, uint32_t mark) { uint32_t *mem = kmap_atomic(page, KM_USER0); int i; for (i = start; i < end; i += 4) DRM_INFO("%08x: %08x%s\n", (int) (bias + i), mem[i / 4], (bias + i == mark) ? " ********" : ""); kunmap_atomic(mem, KM_USER0); /* give syslog time to catch up */ msleep(1); } static void i915_gem_dump_object(struct drm_gem_object *obj, int len, const char *where, uint32_t mark) { struct drm_i915_gem_object *obj_priv = obj->driver_private; int page; DRM_INFO("%s: object at offset %08x\n", where, obj_priv->gtt_offset); for (page = 0; page < (len + PAGE_SIZE-1) / PAGE_SIZE; page++) { int page_len, chunk, chunk_len; page_len = len - page * PAGE_SIZE; if (page_len > PAGE_SIZE) page_len = PAGE_SIZE; for (chunk = 0; chunk < page_len; chunk += 128) { chunk_len = page_len - chunk; if (chunk_len > 128) chunk_len = 128; i915_gem_dump_page(obj_priv->page_list[page], chunk, chunk + chunk_len, obj_priv->gtt_offset + page * PAGE_SIZE, mark); } } } #endif #if WATCH_LRU static void i915_dump_lru(struct drm_device *dev, const char *where) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv; DRM_INFO("active list %s {\n", where); list_for_each_entry(obj_priv, &dev_priv->mm.active_list, list) { DRM_INFO(" %p: %08x\n", obj_priv, obj_priv->last_rendering_seqno); } DRM_INFO("}\n"); DRM_INFO("flushing list %s {\n", where); list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) { DRM_INFO(" %p: %08x\n", obj_priv, obj_priv->last_rendering_seqno); } DRM_INFO("}\n"); DRM_INFO("inactive %s {\n", where); list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) { DRM_INFO(" %p: %08x\n", obj_priv, obj_priv->last_rendering_seqno); } DRM_INFO("}\n"); } #endif static int i915_gem_evict_something(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; for (;;) { /* If there's an inactive buffer available now, grab it * and be done. */ if (!list_empty(&dev_priv->mm.inactive_list)) { obj_priv = list_first_entry(&dev_priv->mm.inactive_list, struct drm_i915_gem_object, list); obj = obj_priv->obj; BUG_ON(obj_priv->pin_count != 0); break; } /* If we didn't get anything, but the ring is still processing * things, wait for one of those things to finish and hopefully * leave us a buffer to evict. */ if (!list_empty(&dev_priv->mm.request_list)) { struct drm_i915_gem_request *request; int ret; request = list_first_entry(&dev_priv->mm.request_list, struct drm_i915_gem_request, list); ret = i915_wait_request(dev, request->seqno); if (ret != 0) return ret; continue; } /* If we didn't have anything on the request list but there * are buffers awaiting a flush, emit one and try again. * When we wait on it, those buffers waiting for that flush * will get moved to inactive. */ if (!list_empty(&dev_priv->mm.flushing_list)) { obj_priv = list_first_entry(&dev_priv->mm.flushing_list, struct drm_i915_gem_object, list); obj = obj_priv->obj; i915_gem_flush(dev, obj->write_domain, obj->write_domain); i915_add_request(dev, obj->write_domain); obj = NULL; continue; } /* If we didn't do any of the above, there's nothing to be done * and we just can't fit it in. */ return -ENOMEM; } #if WATCH_LRU DRM_INFO("%s: evicting %p\n", __func__, obj); #endif BUG_ON(obj_priv->active); /* Wait on the rendering and unbind the buffer. */ i915_gem_object_unbind(obj); return 0; } static int i915_gem_object_get_page_list(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = obj->driver_private; int page_count, i; if (obj_priv->page_list) return 0; /* Get the list of pages out of our struct file. They'll be pinned * at this point until we release them. */ page_count = obj->size / PAGE_SIZE; BUG_ON(obj_priv->page_list != NULL); obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *), DRM_MEM_DRIVER); if (obj_priv->page_list == NULL) return -ENOMEM; for (i = 0; i < page_count; i++) { obj_priv->page_list[i] = find_or_create_page(obj->filp->f_mapping, i, GFP_HIGHUSER); if (obj_priv->page_list[i] == NULL) { i915_gem_object_free_page_list(obj); return -ENOMEM; } unlock_page(obj_priv->page_list[i]); } return 0; } /** * Finds free space in the GTT aperture and binds the object there. */ static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment) { struct drm_device *dev = obj->dev; drm_i915_private_t *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj_priv = obj->driver_private; struct drm_memrange_node *free_space; int page_count, ret; if (alignment == 0) alignment = PAGE_SIZE; if (alignment & (PAGE_SIZE - 1)) { DRM_ERROR("Invalid object alignment requested %u\n", alignment); return -EINVAL; } search_free: free_space = drm_memrange_search_free(&dev_priv->mm.gtt_space, obj->size, alignment, 0); if (free_space != NULL) { obj_priv->gtt_space = drm_memrange_get_block(free_space, obj->size, alignment); if (obj_priv->gtt_space != NULL) { obj_priv->gtt_space->private = obj; obj_priv->gtt_offset = obj_priv->gtt_space->start; } } if (obj_priv->gtt_space == NULL) { /* If the gtt is empty and we're still having trouble * fitting our object in, we're out of memory. */ #if WATCH_LRU DRM_INFO("%s: GTT full, evicting something\n", __func__); #endif if (list_empty(&dev_priv->mm.inactive_list) && list_empty(&dev_priv->mm.active_list)) { DRM_ERROR("GTT full, but LRU list empty\n"); return -ENOMEM; } ret = i915_gem_evict_something(dev); if (ret != 0) return ret; goto search_free; } #if WATCH_BUF DRM_INFO("Binding object of size %d at 0x%08x\n", obj->size, obj_priv->gtt_offset); #endif ret = i915_gem_object_get_page_list(obj); if (ret) { drm_memrange_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; return ret; } page_count = obj->size / PAGE_SIZE; /* Create an AGP memory structure pointing at our pages, and bind it * into the GTT. */ obj_priv->agp_mem = drm_agp_bind_pages(dev, obj_priv->page_list, page_count, obj_priv->gtt_offset); if (obj_priv->agp_mem == NULL) { i915_gem_object_free_page_list(obj); drm_memrange_put_block(obj_priv->gtt_space); obj_priv->gtt_space = NULL; return -ENOMEM; } /* Assert that the object is not currently in any GPU domain. As it * wasn't in the GTT, there shouldn't be any way it could have been in * a GPU cache */ BUG_ON(obj->read_domains & ~DRM_GEM_DOMAIN_CPU); BUG_ON(obj->write_domain & ~DRM_GEM_DOMAIN_CPU); return 0; } static void i915_gem_clflush_object(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv = obj->driver_private; /* If we don't have a page list set up, then we're not pinned * to GPU, and we can ignore the cache flush because it'll happen * again at bind time. */ if (obj_priv->page_list == NULL) return; drm_ttm_cache_flush(obj_priv->page_list, obj->size / PAGE_SIZE); } /* * Set the next domain for the specified object. This * may not actually perform the necessary flushing/invaliding though, * as that may want to be batched with other set_domain operations * * This is (we hope) the only really tricky part of gem. The goal * is fairly simple -- track which caches hold bits of the object * and make sure they remain coherent. A few concrete examples may * help to explain how it works. For shorthand, we use the notation * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the * a pair of read and write domain masks. * * Case 1: the batch buffer * * 1. Allocated * 2. Written by CPU * 3. Mapped to GTT * 4. Read by GPU * 5. Unmapped from GTT * 6. Freed * * Let's take these a step at a time * * 1. Allocated * Pages allocated from the kernel may still have * cache contents, so we set them to (CPU, CPU) always. * 2. Written by CPU (using pwrite) * The pwrite function calls set_domain (CPU, CPU) and * this function does nothing (as nothing changes) * 3. Mapped by GTT * This function asserts that the object is not * currently in any GPU-based read or write domains * 4. Read by GPU * i915_gem_execbuffer calls set_domain (COMMAND, 0). * As write_domain is zero, this function adds in the * current read domains (CPU+COMMAND, 0). * flush_domains is set to CPU. * invalidate_domains is set to COMMAND * clflush is run to get data out of the CPU caches * then i915_dev_set_domain calls i915_gem_flush to * emit an MI_FLUSH and drm_agp_chipset_flush * 5. Unmapped from GTT * i915_gem_object_unbind calls set_domain (CPU, CPU) * flush_domains and invalidate_domains end up both zero * so no flushing/invalidating happens * 6. Freed * yay, done * * Case 2: The shared render buffer * * 1. Allocated * 2. Mapped to GTT * 3. Read/written by GPU * 4. set_domain to (CPU,CPU) * 5. Read/written by CPU * 6. Read/written by GPU * * 1. Allocated * Same as last example, (CPU, CPU) * 2. Mapped to GTT * Nothing changes (assertions find that it is not in the GPU) * 3. Read/written by GPU * execbuffer calls set_domain (RENDER, RENDER) * flush_domains gets CPU * invalidate_domains gets GPU * clflush (obj) * MI_FLUSH and drm_agp_chipset_flush * 4. set_domain (CPU, CPU) * flush_domains gets GPU * invalidate_domains gets CPU * wait_rendering (obj) to make sure all drawing is complete. * This will include an MI_FLUSH to get the data from GPU * to memory * clflush (obj) to invalidate the CPU cache * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?) * 5. Read/written by CPU * cache lines are loaded and dirtied * 6. Read written by GPU * Same as last GPU access * * Case 3: The constant buffer * * 1. Allocated * 2. Written by CPU * 3. Read by GPU * 4. Updated (written) by CPU again * 5. Read by GPU * * 1. Allocated * (CPU, CPU) * 2. Written by CPU * (CPU, CPU) * 3. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush * 4. Updated (written) by CPU again * (CPU, CPU) * flush_domains = 0 (no previous write domain) * invalidate_domains = 0 (no new read domains) * 5. Read by GPU * (CPU+RENDER, 0) * flush_domains = CPU * invalidate_domains = RENDER * clflush (obj) * MI_FLUSH * drm_agp_chipset_flush */ static void i915_gem_object_set_domain(struct drm_gem_object *obj, uint32_t read_domains, uint32_t write_domain) { struct drm_device *dev = obj->dev; uint32_t invalidate_domains = 0; uint32_t flush_domains = 0; #if WATCH_BUF DRM_INFO("%s: object %p read %08x write %08x\n", __func__, obj, read_domains, write_domain); #endif /* * If the object isn't moving to a new write domain, * let the object stay in multiple read domains */ if (write_domain == 0) read_domains |= obj->read_domains; /* * Flush the current write domain if * the new read domains don't match. Invalidate * any read domains which differ from the old * write domain */ if (obj->write_domain && obj->write_domain != read_domains) { flush_domains |= obj->write_domain; invalidate_domains |= read_domains & ~obj->write_domain; } /* * Invalidate any read caches which may have * stale data. That is, any new read domains. */ invalidate_domains |= read_domains & ~obj->read_domains; if ((flush_domains | invalidate_domains) & DRM_GEM_DOMAIN_CPU) { #if WATCH_BUF DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n", __func__, flush_domains, invalidate_domains); #endif /* * If we're invaliding the CPU cache and flushing a GPU cache, * then pause for rendering so that the GPU caches will be * flushed before the cpu cache is invalidated */ if ((invalidate_domains & DRM_GEM_DOMAIN_CPU) && (flush_domains & ~DRM_GEM_DOMAIN_CPU)) i915_gem_object_wait_rendering(obj); i915_gem_clflush_object(obj); } obj->write_domain = write_domain; obj->read_domains = read_domains; dev->invalidate_domains |= invalidate_domains; dev->flush_domains |= flush_domains; } /** * Once all of the objects have been set in the proper domain, * perform the necessary flush and invalidate operations. * * Returns the write domains flushed, for use in flush tracking. */ static uint32_t i915_gem_dev_set_domain(struct drm_device *dev) { uint32_t flush_domains = dev->flush_domains; /* * Now that all the buffers are synced to the proper domains, * flush and invalidate the collected domains */ if (dev->invalidate_domains | dev->flush_domains) { #if WATCH_EXEC DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n", __func__, dev->invalidate_domains, dev->flush_domains); #endif i915_gem_flush(dev, dev->invalidate_domains, dev->flush_domains); dev->invalidate_domains = 0; dev->flush_domains = 0; } return flush_domains; } #if WATCH_COHERENCY static void i915_gem_object_check_coherency(struct drm_gem_object *obj, int handle) { struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = obj->driver_private; int page; uint32_t *gtt_mapping; uint32_t *backing_map = NULL; int bad_count = 0; DRM_INFO("%s: checking coherency of object %p@0x%08x (%d, %dkb):\n", __FUNCTION__, obj, obj_priv->gtt_offset, handle, obj->size / 1024); gtt_mapping = ioremap(dev->agp->base + obj_priv->gtt_offset, obj->size); if (gtt_mapping == NULL) { DRM_ERROR("failed to map GTT space\n"); return; } for (page = 0; page < obj->size / PAGE_SIZE; page++) { int i; backing_map = kmap_atomic(obj_priv->page_list[page], KM_USER0); if (backing_map == NULL) { DRM_ERROR("failed to map backing page\n"); goto out; } for (i = 0; i < PAGE_SIZE / 4; i++) { uint32_t cpuval = backing_map[i]; uint32_t gttval = readl(gtt_mapping + page * 1024 + i); if (cpuval != gttval) { DRM_INFO("incoherent CPU vs GPU at 0x%08x: " "0x%08x vs 0x%08x\n", (int)(obj_priv->gtt_offset + page * PAGE_SIZE + i * 4), cpuval, gttval); if (bad_count++ >= 8) { DRM_INFO("...\n"); goto out; } } } kunmap_atomic(backing_map, KM_USER0); backing_map = NULL; } out: if (backing_map != NULL) kunmap_atomic(backing_map, KM_USER0); iounmap(gtt_mapping); /* give syslog time to catch up */ msleep(1); /* Directly flush the object, since we just loaded values with the CPU * from thebacking pages and we don't want to disturb the cache * management that we're trying to observe. */ i915_gem_clflush_object(obj); } #endif static int i915_gem_reloc_and_validate_object(struct drm_gem_object *obj, struct drm_file *file_priv, struct drm_i915_gem_exec_object *entry) { struct drm_device *dev = obj->dev; struct drm_i915_gem_relocation_entry reloc; struct drm_i915_gem_relocation_entry __user *relocs; struct drm_i915_gem_object *obj_priv = obj->driver_private; int i; uint32_t last_reloc_offset = -1; void *reloc_page = NULL; /* Choose the GTT offset for our buffer and put it there. */ if (obj_priv->gtt_space == NULL) { i915_gem_object_bind_to_gtt(obj, (unsigned) entry->alignment); if (obj_priv->gtt_space == NULL) return -ENOMEM; } entry->offset = obj_priv->gtt_offset; relocs = (struct drm_i915_gem_relocation_entry __user *) (uintptr_t) entry->relocs_ptr; /* Apply the relocations, using the GTT aperture to avoid cache * flushing requirements. */ for (i = 0; i < entry->relocation_count; i++) { struct drm_gem_object *target_obj; struct drm_i915_gem_object *target_obj_priv; uint32_t reloc_val, reloc_offset, *reloc_entry; int ret; ret = copy_from_user(&reloc, relocs + i, sizeof(reloc)); if (ret != 0) return ret; target_obj = drm_gem_object_lookup(obj->dev, file_priv, reloc.target_handle); if (target_obj == NULL) return -EINVAL; target_obj_priv = target_obj->driver_private; /* The target buffer should have appeared before us in the * validate list, so it should have a GTT space bound by now. */ if (target_obj_priv->gtt_space == NULL) { DRM_ERROR("No GTT space found for object %d\n", reloc.target_handle); drm_gem_object_unreference(target_obj); return -EINVAL; } if (reloc.offset > obj->size - 4) { DRM_ERROR("Relocation beyond object bounds: " "obj %p target %d offset %d size %d.\n", obj, reloc.target_handle, (int) reloc.offset, (int) obj->size); drm_gem_object_unreference(target_obj); return -EINVAL; } if (reloc.offset & 3) { DRM_ERROR("Relocation not 4-byte aligned: " "obj %p target %d offset %d.\n", obj, reloc.target_handle, (int) reloc.offset); drm_gem_object_unreference(target_obj); return -EINVAL; } if (reloc.write_domain && target_obj->pending_write_domain && reloc.write_domain != target_obj->pending_write_domain) { DRM_ERROR("Write domain conflict: " "obj %p target %d offset %d " "new %08x old %08x\n", obj, reloc.target_handle, (int) reloc.offset, reloc.write_domain, target_obj->pending_write_domain); drm_gem_object_unreference(target_obj); return -EINVAL; } #if WATCH_RELOC DRM_INFO("%s: obj %p offset %08x target %d " "read %08x write %08x gtt %08x " "presumed %08x delta %08x\n", __func__, obj, (int) reloc.offset, (int) reloc.target_handle, (int) reloc.read_domains, (int) reloc.write_domain, (int) target_obj_priv->gtt_offset, (int) reloc.presumed_offset, reloc.delta); #endif target_obj->pending_read_domains |= reloc.read_domains; target_obj->pending_write_domain |= reloc.write_domain; /* If the relocation already has the right value in it, no * more work needs to be done. */ if (target_obj_priv->gtt_offset == reloc.presumed_offset) { drm_gem_object_unreference(target_obj); continue; } /* Now that we're going to actually write some data in, * make sure that any rendering using this buffer's contents * is completed. */ i915_gem_object_wait_rendering(obj); /* As we're writing through the gtt, flush * any CPU writes before we write the relocations */ if (obj->write_domain & DRM_GEM_DOMAIN_CPU) { i915_gem_clflush_object(obj); drm_agp_chipset_flush(dev); obj->write_domain = 0; } /* Map the page containing the relocation we're going to * perform. */ reloc_offset = obj_priv->gtt_offset + reloc.offset; if (reloc_page == NULL || (last_reloc_offset & ~(PAGE_SIZE - 1)) != (reloc_offset & ~(PAGE_SIZE - 1))) { if (reloc_page != NULL) iounmap(reloc_page); reloc_page = ioremap(dev->agp->base + (reloc_offset & ~(PAGE_SIZE - 1)), PAGE_SIZE); last_reloc_offset = reloc_offset; if (reloc_page == NULL) { drm_gem_object_unreference(target_obj); return -ENOMEM; } } reloc_entry = (uint32_t *)((char *)reloc_page + (reloc_offset & (PAGE_SIZE - 1))); reloc_val = target_obj_priv->gtt_offset + reloc.delta; #if WATCH_BUF DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n", obj, (unsigned int) reloc.offset, readl(reloc_entry), reloc_val); #endif writel(reloc_val, reloc_entry); /* Write the updated presumed offset for this entry back out * to the user. */ reloc.presumed_offset = target_obj_priv->gtt_offset; ret = copy_to_user(relocs + i, &reloc, sizeof(reloc)); if (ret != 0) { drm_gem_object_unreference(target_obj); return ret; } drm_gem_object_unreference(target_obj); } if (reloc_page != NULL) iounmap(reloc_page); #if WATCH_BUF i915_gem_dump_object(obj, 128, __func__, ~0); #endif return 0; } static int i915_dispatch_gem_execbuffer(struct drm_device *dev, struct drm_i915_gem_execbuffer *exec, uint64_t exec_offset) { drm_i915_private_t *dev_priv = dev->dev_private; struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *) (uintptr_t) exec->cliprects_ptr; int nbox = exec->num_cliprects; int i = 0, count; uint32_t exec_start, exec_len; RING_LOCALS; exec_start = (uint32_t) exec_offset + exec->batch_start_offset; exec_len = (uint32_t) exec->batch_len; if ((exec_start | exec_len) & 0x7) { DRM_ERROR("alignment\n"); return -EINVAL; } if (!exec_start) return -EINVAL; count = nbox ? nbox : 1; for (i = 0; i < count; i++) { if (i < nbox) { int ret = i915_emit_box(dev, boxes, i, exec->DR1, exec->DR4); if (ret) return ret; } if (dev_priv->use_mi_batchbuffer_start) { BEGIN_LP_RING(2); if (IS_I965G(dev)) { OUT_RING(MI_BATCH_BUFFER_START | (2 << 6) | MI_BATCH_NON_SECURE_I965); OUT_RING(exec_start); } else { OUT_RING(MI_BATCH_BUFFER_START | (2 << 6)); OUT_RING(exec_start | MI_BATCH_NON_SECURE); } ADVANCE_LP_RING(); } else { BEGIN_LP_RING(4); OUT_RING(MI_BATCH_BUFFER); OUT_RING(exec_start | MI_BATCH_NON_SECURE); OUT_RING(exec_start + exec_len - 4); OUT_RING(0); ADVANCE_LP_RING(); } } /* XXX breadcrumb */ return 0; } /* Throttle our rendering by waiting until the ring has completed our requests * emitted over 20 msec ago. * * This should get us reasonable parallelism between CPU and GPU but also * relatively low latency when blocking on a particular request to finish. */ static int i915_gem_ring_throttle(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; int ret = 0; mutex_lock(&dev->struct_mutex); while (!list_empty(&dev_priv->mm.request_list)) { struct drm_i915_gem_request *request; request = list_first_entry(&dev_priv->mm.request_list, struct drm_i915_gem_request, list); /* Break out if we're close enough. */ if ((long) (jiffies - request->emitted_jiffies) <= (20 * HZ) / 1000) { mutex_unlock(&dev->struct_mutex); return 0; } /* Wait on the last request if not. */ ret = i915_wait_request(dev, request->seqno); if (ret != 0) { mutex_unlock(&dev->struct_mutex); return ret; } } mutex_unlock(&dev->struct_mutex); return ret; } int i915_gem_execbuffer(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_execbuffer *args = data; struct drm_i915_gem_exec_object *validate_list = NULL; struct drm_gem_object **object_list = NULL; struct drm_gem_object *batch_obj; int ret, i; uint64_t exec_offset; uint32_t seqno, flush_domains; LOCK_TEST_WITH_RETURN(dev, file_priv); #if WATCH_EXEC DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n", (int) args->buffers_ptr, args->buffer_count, args->batch_len); #endif i915_kernel_lost_context(dev); ret = i915_gem_ring_throttle(dev); if (ret) return ret; /* Copy in the validate list from userland */ validate_list = drm_calloc(sizeof(*validate_list), args->buffer_count, DRM_MEM_DRIVER); object_list = drm_calloc(sizeof(*object_list), args->buffer_count, DRM_MEM_DRIVER); if (validate_list == NULL || object_list == NULL) { DRM_ERROR("Failed to allocate validate or object list " "for %d buffers\n", args->buffer_count); ret = -ENOMEM; goto err; } ret = copy_from_user(validate_list, (struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, sizeof(*validate_list) * args->buffer_count); if (ret != 0) { DRM_ERROR("copy %d validate entries failed %d\n", args->buffer_count, ret); goto err; } mutex_lock(&dev->struct_mutex); /* Look up object handles and perform the relocations */ for (i = 0; i < args->buffer_count; i++) { object_list[i] = drm_gem_object_lookup(dev, file_priv, validate_list[i].handle); if (object_list[i] == NULL) { DRM_ERROR("Invalid object handle %d at index %d\n", validate_list[i].handle, i); ret = -EINVAL; goto err; } ret = i915_gem_reloc_and_validate_object(object_list[i], file_priv, &validate_list[i]); if (ret) { DRM_ERROR("reloc and validate failed %d\n", ret); goto err; } } /* Set the pending read domains for the batch buffer to COMMAND */ batch_obj = object_list[args->buffer_count-1]; batch_obj->pending_read_domains = DRM_GEM_DOMAIN_I915_COMMAND; batch_obj->pending_write_domain = 0; for (i = 0; i < args->buffer_count; i++) { struct drm_gem_object *obj = object_list[i]; struct drm_i915_gem_object *obj_priv = obj->driver_private; if (obj_priv->gtt_space == NULL) { /* We evicted the buffer in the process of validating * our set of buffers in. We could try to recover by * kicking them everything out and trying again from * the start. */ ret = -ENOMEM; goto err; } /* make sure all previous memory operations have passed */ i915_gem_object_set_domain(obj, obj->pending_read_domains, obj->pending_write_domain); obj->pending_read_domains = 0; obj->pending_write_domain = 0; } /* Flush/invalidate caches and chipset buffer */ flush_domains = i915_gem_dev_set_domain(dev); #if WATCH_COHERENCY for (i = 0; i < args->buffer_count; i++) { i915_gem_object_check_coherency(object_list[i], validate_list[i].handle); } #endif exec_offset = validate_list[args->buffer_count - 1].offset; #if WATCH_EXEC i915_gem_dump_object(object_list[args->buffer_count - 1], args->batch_len, __func__, ~0); #endif /* Exec the batchbuffer */ ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset); if (ret) { DRM_ERROR("dispatch failed %d\n", ret); goto err; } /* * Ensure that the commands in the batch buffer are * finished before the interrupt fires */ flush_domains |= i915_retire_commands(dev); /* * Get a seqno representing the execution of the current buffer, * which we can wait on. We would like to mitigate these interrupts, * likely by only creating seqnos occasionally (so that we have * *some* interrupts representing completion of buffers that we can * wait on when trying to clear up gtt space). */ seqno = i915_add_request(dev, flush_domains); BUG_ON(seqno == 0); for (i = 0; i < args->buffer_count; i++) { struct drm_gem_object *obj = object_list[i]; struct drm_i915_gem_object *obj_priv = obj->driver_private; i915_gem_object_move_to_active(obj); obj_priv->last_rendering_seqno = seqno; #if WATCH_LRU DRM_INFO("%s: move to exec list %p\n", __func__, obj); #endif } #if WATCH_LRU i915_dump_lru(dev, __func__); #endif /* Copy the new buffer offsets back to the user's validate list. */ ret = copy_to_user((struct drm_i915_relocation_entry __user *) (uintptr_t) args->buffers_ptr, validate_list, sizeof(*validate_list) * args->buffer_count); if (ret) DRM_ERROR("failed to copy %d validate entries " "back to user (%d)\n", args->buffer_count, ret); err: if (object_list != NULL) { for (i = 0; i < args->buffer_count; i++) drm_gem_object_unreference(object_list[i]); } mutex_unlock(&dev->struct_mutex); drm_free(object_list, sizeof(*object_list) * args->buffer_count, DRM_MEM_DRIVER); drm_free(validate_list, sizeof(*validate_list) * args->buffer_count, DRM_MEM_DRIVER); return ret; } int i915_gem_pin_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pin *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; int ret; mutex_lock(&dev->struct_mutex); i915_kernel_lost_context(dev); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n", args->handle); mutex_unlock(&dev->struct_mutex); return -EINVAL; } obj_priv = obj->driver_private; if (obj_priv->gtt_space == NULL) { ret = i915_gem_object_bind_to_gtt(obj, (unsigned) args->alignment); if (ret != 0) { DRM_ERROR("Failure to bind in " "i915_gem_pin_ioctl(): %d\n", ret); drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return ret; } } obj_priv->pin_count++; args->offset = obj_priv->gtt_offset; drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_unpin_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_pin *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; mutex_lock(&dev->struct_mutex); i915_kernel_lost_context(dev); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n", args->handle); mutex_unlock(&dev->struct_mutex); return -EINVAL; } obj_priv = obj->driver_private; obj_priv->pin_count--; drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_busy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { struct drm_i915_gem_busy *args = data; struct drm_gem_object *obj; struct drm_i915_gem_object *obj_priv; mutex_lock(&dev->struct_mutex); obj = drm_gem_object_lookup(dev, file_priv, args->handle); if (obj == NULL) { DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n", args->handle); mutex_unlock(&dev->struct_mutex); return -EINVAL; } obj_priv = obj->driver_private; args->busy = obj_priv->active; drm_gem_object_unreference(obj); mutex_unlock(&dev->struct_mutex); return 0; } int i915_gem_init_object(struct drm_gem_object *obj) { struct drm_i915_gem_object *obj_priv; obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER); if (obj_priv == NULL) return -ENOMEM; obj->driver_private = obj_priv; obj_priv->obj = obj; INIT_LIST_HEAD(&obj_priv->list); return 0; } void i915_gem_free_object(struct drm_gem_object *obj) { i915_kernel_lost_context(obj->dev); i915_gem_object_unbind(obj); drm_free(obj->driver_private, 1, DRM_MEM_DRIVER); } int i915_gem_set_domain(struct drm_gem_object *obj, struct drm_file *file_priv, uint32_t read_domains, uint32_t write_domain) { struct drm_device *dev = obj->dev; BUG_ON(!mutex_is_locked(&dev->struct_mutex)); drm_client_lock_take(dev, file_priv); i915_kernel_lost_context(dev); i915_gem_object_set_domain(obj, read_domains, write_domain); i915_gem_dev_set_domain(obj->dev); drm_client_lock_release(dev); return 0; } int i915_gem_flush_pwrite(struct drm_gem_object *obj, uint64_t offset, uint64_t size) { #if 0 struct drm_device *dev = obj->dev; struct drm_i915_gem_object *obj_priv = obj->driver_private; /* * For writes much less than the size of the object and * which are already pinned in memory, do the flush right now */ if ((size < obj->size >> 1) && obj_priv->page_list != NULL) { unsigned long first_page = offset / PAGE_SIZE; unsigned long beyond_page = roundup(offset + size, PAGE_SIZE) / PAGE_SIZE; drm_ttm_cache_flush(obj_priv->page_list + first_page, beyond_page - first_page); drm_agp_chipset_flush(dev); obj->write_domain = 0; } #endif return 0; } void i915_gem_lastclose(struct drm_device *dev) { drm_i915_private_t *dev_priv = dev->dev_private; mutex_lock(&dev->struct_mutex); /* Assume that the chip has been idled at this point. Just pull them * off the execution list and unref them. Since this is the last * close, this is also the last ref and they'll go away. */ while (!list_empty(&dev_priv->mm.active_list)) { struct drm_i915_gem_object *obj_priv; obj_priv = list_first_entry(&dev_priv->mm.active_list, struct drm_i915_gem_object, list); list_del_init(&obj_priv->list); obj_priv->active = 0; obj_priv->obj->write_domain = 0; drm_gem_object_unreference(obj_priv->obj); } mutex_unlock(&dev->struct_mutex); }