drm/linux-core/drm_objects.h

828 lines
27 KiB
C

/**************************************************************************
*
* Copyright (c) 2006-2007 Tungsten Graphics, Inc., Cedar Park, TX., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellström <thomas-at-tungstengraphics-dot-com>
*/
#ifndef _DRM_OBJECTS_H
#define _DRM_OBJECTS_H
struct drm_device;
struct drm_bo_mem_reg;
/***************************************************
* User space objects. (drm_object.c)
*/
#define drm_user_object_entry(_ptr, _type, _member) container_of(_ptr, _type, _member)
enum drm_object_type {
drm_fence_type,
drm_buffer_type,
drm_lock_type,
/*
* Add other user space object types here.
*/
drm_driver_type0 = 256,
drm_driver_type1,
drm_driver_type2,
drm_driver_type3,
drm_driver_type4
};
/*
* A user object is a structure that helps the drm give out user handles
* to kernel internal objects and to keep track of these objects so that
* they can be destroyed, for example when the user space process exits.
* Designed to be accessible using a user space 32-bit handle.
*/
struct drm_user_object {
struct drm_hash_item hash;
struct list_head list;
enum drm_object_type type;
atomic_t refcount;
int shareable;
struct drm_file *owner;
void (*ref_struct_locked) (struct drm_file *priv,
struct drm_user_object *obj,
enum drm_ref_type ref_action);
void (*unref) (struct drm_file *priv, struct drm_user_object *obj,
enum drm_ref_type unref_action);
void (*remove) (struct drm_file *priv, struct drm_user_object *obj);
};
/*
* A ref object is a structure which is used to
* keep track of references to user objects and to keep track of these
* references so that they can be destroyed for example when the user space
* process exits. Designed to be accessible using a pointer to the _user_ object.
*/
struct drm_ref_object {
struct drm_hash_item hash;
struct list_head list;
atomic_t refcount;
enum drm_ref_type unref_action;
};
/**
* Must be called with the struct_mutex held.
*/
extern int drm_add_user_object(struct drm_file *priv, struct drm_user_object *item,
int shareable);
/**
* Must be called with the struct_mutex held.
*/
extern struct drm_user_object *drm_lookup_user_object(struct drm_file *priv,
uint32_t key);
/*
* Must be called with the struct_mutex held. May temporarily release it.
*/
extern int drm_add_ref_object(struct drm_file *priv,
struct drm_user_object *referenced_object,
enum drm_ref_type ref_action);
/*
* Must be called with the struct_mutex held.
*/
struct drm_ref_object *drm_lookup_ref_object(struct drm_file *priv,
struct drm_user_object *referenced_object,
enum drm_ref_type ref_action);
/*
* Must be called with the struct_mutex held.
* If "item" has been obtained by a call to drm_lookup_ref_object. You may not
* release the struct_mutex before calling drm_remove_ref_object.
* This function may temporarily release the struct_mutex.
*/
extern void drm_remove_ref_object(struct drm_file *priv, struct drm_ref_object *item);
extern int drm_user_object_ref(struct drm_file *priv, uint32_t user_token,
enum drm_object_type type,
struct drm_user_object **object);
extern int drm_user_object_unref(struct drm_file *priv, uint32_t user_token,
enum drm_object_type type);
/***************************************************
* Fence objects. (drm_fence.c)
*/
struct drm_fence_object {
struct drm_user_object base;
struct drm_device *dev;
atomic_t usage;
/*
* The below three fields are protected by the fence manager spinlock.
*/
struct list_head ring;
int fence_class;
uint32_t native_types;
uint32_t type;
uint32_t signaled_types;
uint32_t sequence;
uint32_t waiting_types;
uint32_t error;
};
#define _DRM_FENCE_CLASSES 8
#define _DRM_FENCE_TYPE_EXE 0x00
struct drm_fence_class_manager {
struct list_head ring;
uint32_t pending_flush;
uint32_t waiting_types;
wait_queue_head_t fence_queue;
uint32_t highest_waiting_sequence;
uint32_t latest_queued_sequence;
};
struct drm_fence_manager {
int initialized;
rwlock_t lock;
struct drm_fence_class_manager fence_class[_DRM_FENCE_CLASSES];
uint32_t num_classes;
atomic_t count;
};
struct drm_fence_driver {
unsigned long *waiting_jiffies;
uint32_t num_classes;
uint32_t wrap_diff;
uint32_t flush_diff;
uint32_t sequence_mask;
/*
* Driver implemented functions:
* has_irq() : 1 if the hardware can update the indicated type_flags using an
* irq handler. 0 if polling is required.
*
* emit() : Emit a sequence number to the command stream.
* Return the sequence number.
*
* flush() : Make sure the flags indicated in fc->pending_flush will eventually
* signal for fc->highest_received_sequence and all preceding sequences.
* Acknowledge by clearing the flags fc->pending_flush.
*
* poll() : Call drm_fence_handler with any new information.
*
* needed_flush() : Given the current state of the fence->type flags and previusly
* executed or queued flushes, return the type_flags that need flushing.
*
* wait(): Wait for the "mask" flags to signal on a given fence, performing
* whatever's necessary to make this happen.
*/
int (*has_irq) (struct drm_device *dev, uint32_t fence_class,
uint32_t flags);
int (*emit) (struct drm_device *dev, uint32_t fence_class,
uint32_t flags, uint32_t *breadcrumb,
uint32_t *native_type);
void (*flush) (struct drm_device *dev, uint32_t fence_class);
void (*poll) (struct drm_device *dev, uint32_t fence_class,
uint32_t types);
uint32_t (*needed_flush) (struct drm_fence_object *fence);
int (*wait) (struct drm_fence_object *fence, int lazy,
int interruptible, uint32_t mask);
};
extern int drm_fence_wait_polling(struct drm_fence_object *fence, int lazy,
int interruptible, uint32_t mask,
unsigned long end_jiffies);
extern void drm_fence_handler(struct drm_device *dev, uint32_t fence_class,
uint32_t sequence, uint32_t type,
uint32_t error);
extern void drm_fence_manager_init(struct drm_device *dev);
extern void drm_fence_manager_takedown(struct drm_device *dev);
extern void drm_fence_flush_old(struct drm_device *dev, uint32_t fence_class,
uint32_t sequence);
extern int drm_fence_object_flush(struct drm_fence_object *fence,
uint32_t type);
extern int drm_fence_object_signaled(struct drm_fence_object *fence,
uint32_t type);
extern void drm_fence_usage_deref_locked(struct drm_fence_object **fence);
extern void drm_fence_usage_deref_unlocked(struct drm_fence_object **fence);
extern struct drm_fence_object *drm_fence_reference_locked(struct drm_fence_object *src);
extern void drm_fence_reference_unlocked(struct drm_fence_object **dst,
struct drm_fence_object *src);
extern int drm_fence_object_wait(struct drm_fence_object *fence,
int lazy, int ignore_signals, uint32_t mask);
extern int drm_fence_object_create(struct drm_device *dev, uint32_t type,
uint32_t fence_flags, uint32_t fence_class,
struct drm_fence_object **c_fence);
extern int drm_fence_object_emit(struct drm_fence_object *fence,
uint32_t fence_flags, uint32_t class,
uint32_t type);
extern void drm_fence_fill_arg(struct drm_fence_object *fence,
struct drm_fence_arg *arg);
extern int drm_fence_add_user_object(struct drm_file *priv,
struct drm_fence_object *fence,
int shareable);
extern int drm_fence_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_reference_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_unreference_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_signaled_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_flush_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_wait_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_emit_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
extern int drm_fence_buffers_ioctl(struct drm_device *dev, void *data,
struct drm_file *file_priv);
/**************************************************
*TTMs
*/
/*
* The ttm backend GTT interface. (In our case AGP).
* Any similar type of device (PCIE?)
* needs only to implement these functions to be usable with the TTM interface.
* The AGP backend implementation lives in drm_agpsupport.c
* basically maps these calls to available functions in agpgart.
* Each drm device driver gets an
* additional function pointer that creates these types,
* so that the device can choose the correct aperture.
* (Multiple AGP apertures, etc.)
* Most device drivers will let this point to the standard AGP implementation.
*/
#define DRM_BE_FLAG_NEEDS_FREE 0x00000001
#define DRM_BE_FLAG_BOUND_CACHED 0x00000002
struct drm_ttm_backend;
struct drm_ttm_backend_func {
int (*needs_ub_cache_adjust) (struct drm_ttm_backend *backend);
int (*populate) (struct drm_ttm_backend *backend,
unsigned long num_pages, struct page **pages,
struct page *dummy_read_page);
void (*clear) (struct drm_ttm_backend *backend);
int (*bind) (struct drm_ttm_backend *backend,
struct drm_bo_mem_reg *bo_mem);
int (*unbind) (struct drm_ttm_backend *backend);
void (*destroy) (struct drm_ttm_backend *backend);
};
struct drm_ttm_backend {
struct drm_device *dev;
uint32_t flags;
struct drm_ttm_backend_func *func;
};
struct drm_ttm {
struct page *dummy_read_page;
struct page **pages;
long first_himem_page;
long last_lomem_page;
uint32_t page_flags;
unsigned long num_pages;
atomic_t vma_count;
struct drm_device *dev;
int destroy;
uint32_t mapping_offset;
struct drm_ttm_backend *be;
unsigned long highest_lomem_entry;
unsigned long lowest_himem_entry;
enum {
ttm_bound,
ttm_evicted,
ttm_unbound,
ttm_unpopulated,
} state;
};
extern struct drm_ttm *drm_ttm_create(struct drm_device *dev, unsigned long size,
uint32_t page_flags,
struct page *dummy_read_page);
extern int drm_ttm_bind(struct drm_ttm *ttm, struct drm_bo_mem_reg *bo_mem);
extern void drm_ttm_unbind(struct drm_ttm *ttm);
extern void drm_ttm_evict(struct drm_ttm *ttm);
extern void drm_ttm_fixup_caching(struct drm_ttm *ttm);
extern struct page *drm_ttm_get_page(struct drm_ttm *ttm, int index);
extern void drm_ttm_cache_flush(struct page *pages[], unsigned long num_pages);
extern int drm_ttm_populate(struct drm_ttm *ttm);
extern int drm_ttm_set_user(struct drm_ttm *ttm,
struct task_struct *tsk,
unsigned long start,
unsigned long num_pages);
/*
* Destroy a ttm. The user normally calls drmRmMap or a similar IOCTL to do
* this which calls this function iff there are no vmas referencing it anymore.
* Otherwise it is called when the last vma exits.
*/
extern int drm_ttm_destroy(struct drm_ttm *ttm);
#define DRM_FLAG_MASKED(_old, _new, _mask) {\
(_old) ^= (((_old) ^ (_new)) & (_mask)); \
}
#define DRM_TTM_MASK_FLAGS ((1 << PAGE_SHIFT) - 1)
#define DRM_TTM_MASK_PFN (0xFFFFFFFFU - DRM_TTM_MASK_FLAGS)
/*
* Page flags.
*/
/*
* This ttm should not be cached by the CPU
*/
#define DRM_TTM_PAGE_UNCACHED (1 << 0)
/*
* This flat is not used at this time; I don't know what the
* intent was
*/
#define DRM_TTM_PAGE_USED (1 << 1)
/*
* This flat is not used at this time; I don't know what the
* intent was
*/
#define DRM_TTM_PAGE_BOUND (1 << 2)
/*
* This flat is not used at this time; I don't know what the
* intent was
*/
#define DRM_TTM_PAGE_PRESENT (1 << 3)
/*
* The array of page pointers was allocated with vmalloc
* instead of drm_calloc.
*/
#define DRM_TTM_PAGEDIR_VMALLOC (1 << 4)
/*
* This ttm is mapped from user space
*/
#define DRM_TTM_PAGE_USER (1 << 5)
/*
* This ttm will be written to by the GPU
*/
#define DRM_TTM_PAGE_WRITE (1 << 6)
/*
* This ttm was mapped to the GPU, and so the contents may have
* been modified
*/
#define DRM_TTM_PAGE_USER_DIRTY (1 << 7)
/*
* This flag is not used at this time; I don't know what the
* intent was.
*/
#define DRM_TTM_PAGE_USER_DMA (1 << 8)
/***************************************************
* Buffer objects. (drm_bo.c, drm_bo_move.c)
*/
struct drm_bo_mem_reg {
struct drm_mm_node *mm_node;
unsigned long size;
unsigned long num_pages;
uint32_t page_alignment;
uint32_t mem_type;
/*
* Current buffer status flags, indicating
* where the buffer is located and which
* access modes are in effect
*/
uint64_t flags;
/**
* These are the flags proposed for
* a validate operation. If the
* validate succeeds, they'll get moved
* into the flags field
*/
uint64_t proposed_flags;
uint32_t desired_tile_stride;
uint32_t hw_tile_stride;
};
enum drm_bo_type {
/*
* drm_bo_type_device are 'normal' drm allocations,
* pages are allocated from within the kernel automatically
* and the objects can be mmap'd from the drm device. Each
* drm_bo_type_device object has a unique name which can be
* used by other processes to share access to the underlying
* buffer.
*/
drm_bo_type_device,
/*
* drm_bo_type_user are buffers of pages that already exist
* in the process address space. They are more limited than
* drm_bo_type_device buffers in that they must always
* remain cached (as we assume the user pages are mapped cached),
* and they are not sharable to other processes through DRM
* (although, regular shared memory should still work fine).
*/
drm_bo_type_user,
/*
* drm_bo_type_kernel are buffers that exist solely for use
* within the kernel. The pages cannot be mapped into the
* process. One obvious use would be for the ring
* buffer where user access would not (ideally) be required.
*/
drm_bo_type_kernel,
};
struct drm_buffer_object {
struct drm_device *dev;
struct drm_user_object base;
/*
* If there is a possibility that the usage variable is zero,
* then dev->struct_mutext should be locked before incrementing it.
*/
atomic_t usage;
unsigned long buffer_start;
enum drm_bo_type type;
unsigned long offset;
atomic_t mapped;
struct drm_bo_mem_reg mem;
struct list_head lru;
struct list_head ddestroy;
uint32_t fence_type;
uint32_t fence_class;
uint32_t new_fence_type;
uint32_t new_fence_class;
struct drm_fence_object *fence;
uint32_t priv_flags;
wait_queue_head_t event_queue;
struct mutex mutex;
unsigned long num_pages;
/* For pinned buffers */
struct drm_mm_node *pinned_node;
uint32_t pinned_mem_type;
struct list_head pinned_lru;
/* For vm */
struct drm_ttm *ttm;
struct drm_map_list map_list;
uint32_t memory_type;
unsigned long bus_offset;
uint32_t vm_flags;
void *iomap;
#ifdef DRM_ODD_MM_COMPAT
/* dev->struct_mutex only protected. */
struct list_head vma_list;
struct list_head p_mm_list;
#endif
};
#define _DRM_BO_FLAG_UNFENCED 0x00000001
#define _DRM_BO_FLAG_EVICTED 0x00000002
/*
* This flag indicates that a flag called with bo->mutex held has
* temporarily released the buffer object mutex, (usually to wait for something).
* and thus any post-lock validation needs to be rerun.
*/
#define _DRM_BO_FLAG_UNLOCKED 0x00000004
struct drm_mem_type_manager {
int has_type;
int use_type;
int kern_init_type;
struct drm_mm manager;
struct list_head lru;
struct list_head pinned;
uint32_t flags;
uint32_t drm_bus_maptype;
unsigned long gpu_offset;
unsigned long io_offset;
unsigned long io_size;
void *io_addr;
uint64_t size; /* size of managed area for reporting to userspace */
};
struct drm_bo_lock {
struct drm_user_object base;
wait_queue_head_t queue;
atomic_t write_lock_pending;
atomic_t readers;
};
#define _DRM_FLAG_MEMTYPE_FIXED 0x00000001 /* Fixed (on-card) PCI memory */
#define _DRM_FLAG_MEMTYPE_MAPPABLE 0x00000002 /* Memory mappable */
#define _DRM_FLAG_MEMTYPE_CACHED 0x00000004 /* Cached binding */
#define _DRM_FLAG_NEEDS_IOREMAP 0x00000008 /* Fixed memory needs ioremap
before kernel access. */
#define _DRM_FLAG_MEMTYPE_CMA 0x00000010 /* Can't map aperture */
#define _DRM_FLAG_MEMTYPE_CSELECT 0x00000020 /* Select caching */
struct drm_buffer_manager {
struct drm_bo_lock bm_lock;
struct mutex evict_mutex;
int nice_mode;
int initialized;
struct drm_file *last_to_validate;
struct drm_mem_type_manager man[DRM_BO_MEM_TYPES];
struct list_head unfenced;
struct list_head ddestroy;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,20)
struct work_struct wq;
#else
struct delayed_work wq;
#endif
uint32_t fence_type;
unsigned long cur_pages;
atomic_t count;
struct page *dummy_read_page;
};
struct drm_bo_driver {
const uint32_t *mem_type_prio;
const uint32_t *mem_busy_prio;
uint32_t num_mem_type_prio;
uint32_t num_mem_busy_prio;
struct drm_ttm_backend *(*create_ttm_backend_entry)
(struct drm_device *dev);
int (*fence_type) (struct drm_buffer_object *bo, uint32_t *fclass,
uint32_t *type);
int (*invalidate_caches) (struct drm_device *dev, uint64_t flags);
int (*init_mem_type) (struct drm_device *dev, uint32_t type,
struct drm_mem_type_manager *man);
/*
* evict_flags:
*
* @bo: the buffer object to be evicted
*
* Return the bo flags for a buffer which is not mapped to the hardware.
* These will be placed in proposed_flags so that when the move is
* finished, they'll end up in bo->mem.flags
*/
uint64_t(*evict_flags) (struct drm_buffer_object *bo);
/*
* move:
*
* @bo: the buffer to move
*
* @evict: whether this motion is evicting the buffer from
* the graphics address space
*
* @no_wait: whether this should give up and return -EBUSY
* if this move would require sleeping
*
* @new_mem: the new memory region receiving the buffer
*
* Move a buffer between two memory regions.
*/
int (*move) (struct drm_buffer_object *bo,
int evict, int no_wait, struct drm_bo_mem_reg *new_mem);
/*
* ttm_cache_flush
*/
void (*ttm_cache_flush)(struct drm_ttm *ttm);
/*
* command_stream_barrier
*
* @dev: The drm device.
*
* @bo: The buffer object to validate.
*
* @new_fence_class: The new fence class for the buffer object.
*
* @new_fence_type: The new fence type for the buffer object.
*
* @no_wait: whether this should give up and return -EBUSY
* if this operation would require sleeping
*
* Insert a command stream barrier that makes sure that the
* buffer is idle once the commands associated with the
* current validation are starting to execute. If an error
* condition is returned, or the function pointer is NULL,
* the drm core will force buffer idle
* during validation.
*/
int (*command_stream_barrier) (struct drm_buffer_object *bo,
uint32_t new_fence_class,
uint32_t new_fence_type,
int no_wait);
};
/*
* buffer objects (drm_bo.c)
*/
extern int drm_bo_create_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_destroy_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_map_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_unmap_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_reference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_unreference_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_wait_idle_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_setstatus_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_mm_init_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_mm_takedown_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_mm_lock_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_mm_unlock_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_mm_info_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_version_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv);
extern int drm_bo_driver_finish(struct drm_device *dev);
extern int drm_bo_driver_init(struct drm_device *dev);
extern int drm_bo_pci_offset(struct drm_device *dev,
struct drm_bo_mem_reg *mem,
unsigned long *bus_base,
unsigned long *bus_offset,
unsigned long *bus_size);
extern int drm_mem_reg_is_pci(struct drm_device *dev, struct drm_bo_mem_reg *mem);
extern void drm_bo_usage_deref_locked(struct drm_buffer_object **bo);
extern void drm_bo_usage_deref_unlocked(struct drm_buffer_object **bo);
extern void drm_putback_buffer_objects(struct drm_device *dev);
extern int drm_fence_buffer_objects(struct drm_device *dev,
struct list_head *list,
uint32_t fence_flags,
struct drm_fence_object *fence,
struct drm_fence_object **used_fence);
extern void drm_bo_add_to_lru(struct drm_buffer_object *bo);
extern int drm_buffer_object_create(struct drm_device *dev, unsigned long size,
enum drm_bo_type type, uint64_t flags,
uint32_t hint, uint32_t page_alignment,
unsigned long buffer_start,
struct drm_buffer_object **bo);
extern int drm_bo_wait(struct drm_buffer_object *bo, int lazy, int interruptible,
int no_wait, int check_unfenced);
extern int drm_bo_mem_space(struct drm_buffer_object *bo,
struct drm_bo_mem_reg *mem, int no_wait);
extern int drm_bo_move_buffer(struct drm_buffer_object *bo,
uint64_t new_mem_flags,
int no_wait, int move_unfenced);
extern int drm_bo_clean_mm(struct drm_device *dev, unsigned mem_type, int kern_clean);
extern int drm_bo_init_mm(struct drm_device *dev, unsigned type,
unsigned long p_offset, unsigned long p_size,
int kern_init);
extern int drm_bo_handle_validate(struct drm_file *file_priv, uint32_t handle,
uint64_t flags, uint64_t mask, uint32_t hint,
uint32_t fence_class,
struct drm_bo_info_rep *rep,
struct drm_buffer_object **bo_rep);
extern struct drm_buffer_object *drm_lookup_buffer_object(struct drm_file *file_priv,
uint32_t handle,
int check_owner);
extern int drm_bo_do_validate(struct drm_buffer_object *bo,
uint64_t flags, uint64_t mask, uint32_t hint,
uint32_t fence_class,
struct drm_bo_info_rep *rep);
extern int drm_bo_evict_cached(struct drm_buffer_object *bo);
/*
* Buffer object memory move- and map helpers.
* drm_bo_move.c
*/
extern int drm_bo_move_ttm(struct drm_buffer_object *bo,
int evict, int no_wait,
struct drm_bo_mem_reg *new_mem);
extern int drm_bo_move_memcpy(struct drm_buffer_object *bo,
int evict,
int no_wait, struct drm_bo_mem_reg *new_mem);
extern int drm_bo_move_accel_cleanup(struct drm_buffer_object *bo,
int evict, int no_wait,
uint32_t fence_class, uint32_t fence_type,
uint32_t fence_flags,
struct drm_bo_mem_reg *new_mem);
extern int drm_bo_same_page(unsigned long offset, unsigned long offset2);
extern unsigned long drm_bo_offset_end(unsigned long offset,
unsigned long end);
struct drm_bo_kmap_obj {
void *virtual;
struct page *page;
enum {
bo_map_iomap,
bo_map_vmap,
bo_map_kmap,
bo_map_premapped,
} bo_kmap_type;
};
static inline void *drm_bmo_virtual(struct drm_bo_kmap_obj *map, int *is_iomem)
{
*is_iomem = (map->bo_kmap_type == bo_map_iomap ||
map->bo_kmap_type == bo_map_premapped);
return map->virtual;
}
extern void drm_bo_kunmap(struct drm_bo_kmap_obj *map);
extern int drm_bo_kmap(struct drm_buffer_object *bo, unsigned long start_page,
unsigned long num_pages, struct drm_bo_kmap_obj *map);
extern int drm_bo_pfn_prot(struct drm_buffer_object *bo,
unsigned long dst_offset,
unsigned long *pfn,
pgprot_t *prot);
extern void drm_bo_fill_rep_arg(struct drm_buffer_object *bo,
struct drm_bo_info_rep *rep);
/*
* drm_regman.c
*/
struct drm_reg {
struct list_head head;
struct drm_fence_object *fence;
uint32_t fence_type;
uint32_t new_fence_type;
};
struct drm_reg_manager {
struct list_head free;
struct list_head lru;
struct list_head unfenced;
int (*reg_reusable)(const struct drm_reg *reg, const void *data);
void (*reg_destroy)(struct drm_reg *reg);
};
extern int drm_regs_alloc(struct drm_reg_manager *manager,
const void *data,
uint32_t fence_class,
uint32_t fence_type,
int interruptible,
int no_wait,
struct drm_reg **reg);
extern void drm_regs_fence(struct drm_reg_manager *regs,
struct drm_fence_object *fence);
extern void drm_regs_free(struct drm_reg_manager *manager);
extern void drm_regs_add(struct drm_reg_manager *manager, struct drm_reg *reg);
extern void drm_regs_init(struct drm_reg_manager *manager,
int (*reg_reusable)(const struct drm_reg *,
const void *),
void (*reg_destroy)(struct drm_reg *));
/*
* drm_bo_lock.c
* Simple replacement for the hardware lock on buffer manager init and clean.
*/
extern void drm_bo_init_lock(struct drm_bo_lock *lock);
extern void drm_bo_read_unlock(struct drm_bo_lock *lock);
extern int drm_bo_read_lock(struct drm_bo_lock *lock,
int interruptible);
extern int drm_bo_write_lock(struct drm_bo_lock *lock,
int interruptible,
struct drm_file *file_priv);
extern int drm_bo_write_unlock(struct drm_bo_lock *lock,
struct drm_file *file_priv);
#ifdef CONFIG_DEBUG_MUTEXES
#define DRM_ASSERT_LOCKED(_mutex) \
BUG_ON(!mutex_is_locked(_mutex) || \
((_mutex)->owner != current_thread_info()))
#else
#define DRM_ASSERT_LOCKED(_mutex)
#endif
#endif