drm/linux/drm_memory_debug.h

447 lines
12 KiB
C

/* drm_memory.h -- Memory management wrappers for DRM -*- linux-c -*-
* Created: Thu Feb 4 14:00:34 1999 by faith@valinux.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Rickard E. (Rik) Faith <faith@valinux.com>
* Gareth Hughes <gareth@valinux.com>
*/
#define __NO_VERSION__
#include <linux/config.h>
#include "drmP.h"
typedef struct drm_mem_stats {
const char *name;
int succeed_count;
int free_count;
int fail_count;
unsigned long bytes_allocated;
unsigned long bytes_freed;
} drm_mem_stats_t;
static spinlock_t DRM(mem_lock) = SPIN_LOCK_UNLOCKED;
static unsigned long DRM(ram_available) = 0; /* In pages */
static unsigned long DRM(ram_used) = 0;
static drm_mem_stats_t DRM(mem_stats)[] = {
[DRM_MEM_DMA] = { "dmabufs" },
[DRM_MEM_SAREA] = { "sareas" },
[DRM_MEM_DRIVER] = { "driver" },
[DRM_MEM_MAGIC] = { "magic" },
[DRM_MEM_IOCTLS] = { "ioctltab" },
[DRM_MEM_MAPS] = { "maplist" },
[DRM_MEM_VMAS] = { "vmalist" },
[DRM_MEM_BUFS] = { "buflist" },
[DRM_MEM_SEGS] = { "seglist" },
[DRM_MEM_PAGES] = { "pagelist" },
[DRM_MEM_FILES] = { "files" },
[DRM_MEM_QUEUES] = { "queues" },
[DRM_MEM_CMDS] = { "commands" },
[DRM_MEM_MAPPINGS] = { "mappings" },
[DRM_MEM_BUFLISTS] = { "buflists" },
[DRM_MEM_AGPLISTS] = { "agplist" },
[DRM_MEM_SGLISTS] = { "sglist" },
[DRM_MEM_TOTALAGP] = { "totalagp" },
[DRM_MEM_BOUNDAGP] = { "boundagp" },
[DRM_MEM_CTXBITMAP] = { "ctxbitmap"},
[DRM_MEM_STUB] = { "stub" },
{ NULL, 0, } /* Last entry must be null */
};
void DRM(mem_init)(void)
{
drm_mem_stats_t *mem;
struct sysinfo si;
for (mem = DRM(mem_stats); mem->name; ++mem) {
mem->succeed_count = 0;
mem->free_count = 0;
mem->fail_count = 0;
mem->bytes_allocated = 0;
mem->bytes_freed = 0;
}
si_meminfo(&si);
DRM(ram_available) = si.totalram;
DRM(ram_used) = 0;
}
/* drm_mem_info is called whenever a process reads /dev/drm/mem. */
static int DRM(_mem_info)(char *buf, char **start, off_t offset,
int request, int *eof, void *data)
{
drm_mem_stats_t *pt;
int len = 0;
if (offset > DRM_PROC_LIMIT) {
*eof = 1;
return 0;
}
*eof = 0;
*start = &buf[offset];
DRM_PROC_PRINT(" total counts "
" | outstanding \n");
DRM_PROC_PRINT("type alloc freed fail bytes freed"
" | allocs bytes\n\n");
DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n",
"system", 0, 0, 0,
DRM(ram_available) << (PAGE_SHIFT - 10));
DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu kB |\n",
"locked", 0, 0, 0, DRM(ram_used) >> 10);
DRM_PROC_PRINT("\n");
for (pt = DRM(mem_stats); pt->name; pt++) {
DRM_PROC_PRINT("%-9.9s %5d %5d %4d %10lu %10lu | %6d %10ld\n",
pt->name,
pt->succeed_count,
pt->free_count,
pt->fail_count,
pt->bytes_allocated,
pt->bytes_freed,
pt->succeed_count - pt->free_count,
(long)pt->bytes_allocated
- (long)pt->bytes_freed);
}
if (len > request + offset) return request;
*eof = 1;
return len - offset;
}
int DRM(mem_info)(char *buf, char **start, off_t offset,
int len, int *eof, void *data)
{
int ret;
spin_lock(&DRM(mem_lock));
ret = DRM(_mem_info)(buf, start, offset, len, eof, data);
spin_unlock(&DRM(mem_lock));
return ret;
}
void *DRM(alloc)(size_t size, int area)
{
void *pt;
if (!size) {
DRM_MEM_ERROR(area, "Allocating 0 bytes\n");
return NULL;
}
if (!(pt = kmalloc(size, GFP_KERNEL))) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[area].fail_count;
spin_unlock(&DRM(mem_lock));
return NULL;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[area].succeed_count;
DRM(mem_stats)[area].bytes_allocated += size;
spin_unlock(&DRM(mem_lock));
return pt;
}
void *DRM(realloc)(void *oldpt, size_t oldsize, size_t size, int area)
{
void *pt;
if (!(pt = DRM(alloc)(size, area))) return NULL;
if (oldpt && oldsize) {
memcpy(pt, oldpt, oldsize);
DRM(free)(oldpt, oldsize, area);
}
return pt;
}
void DRM(free)(void *pt, size_t size, int area)
{
int alloc_count;
int free_count;
if (!pt) DRM_MEM_ERROR(area, "Attempt to free NULL pointer\n");
else kfree(pt);
spin_lock(&DRM(mem_lock));
DRM(mem_stats)[area].bytes_freed += size;
free_count = ++DRM(mem_stats)[area].free_count;
alloc_count = DRM(mem_stats)[area].succeed_count;
spin_unlock(&DRM(mem_lock));
if (free_count > alloc_count) {
DRM_MEM_ERROR(area, "Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
unsigned long DRM(alloc_pages)(int order, int area)
{
unsigned long address;
unsigned long bytes = PAGE_SIZE << order;
unsigned long addr;
unsigned int sz;
spin_lock(&DRM(mem_lock));
if ((DRM(ram_used) >> PAGE_SHIFT)
> (DRM_RAM_PERCENT * DRM(ram_available)) / 100) {
spin_unlock(&DRM(mem_lock));
return 0;
}
spin_unlock(&DRM(mem_lock));
address = __get_free_pages(GFP_KERNEL, order);
if (!address) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[area].fail_count;
spin_unlock(&DRM(mem_lock));
return 0;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[area].succeed_count;
DRM(mem_stats)[area].bytes_allocated += bytes;
DRM(ram_used) += bytes;
spin_unlock(&DRM(mem_lock));
/* Zero outside the lock */
memset((void *)address, 0, bytes);
/* Reserve */
for (addr = address, sz = bytes;
sz > 0;
addr += PAGE_SIZE, sz -= PAGE_SIZE) {
SetPageReserved(virt_to_page(addr));
}
return address;
}
void DRM(free_pages)(unsigned long address, int order, int area)
{
unsigned long bytes = PAGE_SIZE << order;
int alloc_count;
int free_count;
unsigned long addr;
unsigned int sz;
if (!address) {
DRM_MEM_ERROR(area, "Attempt to free address 0\n");
} else {
/* Unreserve */
for (addr = address, sz = bytes;
sz > 0;
addr += PAGE_SIZE, sz -= PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
}
free_pages(address, order);
}
spin_lock(&DRM(mem_lock));
free_count = ++DRM(mem_stats)[area].free_count;
alloc_count = DRM(mem_stats)[area].succeed_count;
DRM(mem_stats)[area].bytes_freed += bytes;
DRM(ram_used) -= bytes;
spin_unlock(&DRM(mem_lock));
if (free_count > alloc_count) {
DRM_MEM_ERROR(area,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
void *DRM(ioremap)(unsigned long offset, unsigned long size)
{
void *pt;
if (!size) {
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Mapping 0 bytes at 0x%08lx\n", offset);
return NULL;
}
if (!(pt = ioremap(offset, size))) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count;
spin_unlock(&DRM(mem_lock));
return NULL;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count;
DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += size;
spin_unlock(&DRM(mem_lock));
return pt;
}
void *DRM(ioremap_nocache)(unsigned long offset, unsigned long size)
{
void *pt;
if (!size) {
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Mapping 0 bytes at 0x%08lx\n", offset);
return NULL;
}
if (!(pt = ioremap_nocache(offset, size))) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_MAPPINGS].fail_count;
spin_unlock(&DRM(mem_lock));
return NULL;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count;
DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_allocated += size;
spin_unlock(&DRM(mem_lock));
return pt;
}
void DRM(ioremapfree)(void *pt, unsigned long size)
{
int alloc_count;
int free_count;
if (!pt)
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Attempt to free NULL pointer\n");
else
iounmap(pt);
spin_lock(&DRM(mem_lock));
DRM(mem_stats)[DRM_MEM_MAPPINGS].bytes_freed += size;
free_count = ++DRM(mem_stats)[DRM_MEM_MAPPINGS].free_count;
alloc_count = DRM(mem_stats)[DRM_MEM_MAPPINGS].succeed_count;
spin_unlock(&DRM(mem_lock));
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_MAPPINGS,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
}
#if __REALLY_HAVE_AGP
agp_memory *DRM(alloc_agp)(int pages, u32 type)
{
agp_memory *handle;
if (!pages) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP, "Allocating 0 pages\n");
return NULL;
}
if ((handle = DRM(agp_allocate_memory)(pages, type))) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count;
DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_allocated
+= pages << PAGE_SHIFT;
spin_unlock(&DRM(mem_lock));
return handle;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_TOTALAGP].fail_count;
spin_unlock(&DRM(mem_lock));
return NULL;
}
int DRM(free_agp)(agp_memory *handle, int pages)
{
int alloc_count;
int free_count;
int retval = -EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP,
"Attempt to free NULL AGP handle\n");
return retval;;
}
if (DRM(agp_free_memory)(handle)) {
spin_lock(&DRM(mem_lock));
free_count = ++DRM(mem_stats)[DRM_MEM_TOTALAGP].free_count;
alloc_count = DRM(mem_stats)[DRM_MEM_TOTALAGP].succeed_count;
DRM(mem_stats)[DRM_MEM_TOTALAGP].bytes_freed
+= pages << PAGE_SHIFT;
spin_unlock(&DRM(mem_lock));
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_TOTALAGP,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
return 0;
}
return retval;
}
int DRM(bind_agp)(agp_memory *handle, unsigned int start)
{
int retcode = -EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Attempt to bind NULL AGP handle\n");
return retcode;
}
if (!(retcode = DRM(agp_bind_memory)(handle, start))) {
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count;
DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_allocated
+= handle->page_count << PAGE_SHIFT;
spin_unlock(&DRM(mem_lock));
return retcode;
}
spin_lock(&DRM(mem_lock));
++DRM(mem_stats)[DRM_MEM_BOUNDAGP].fail_count;
spin_unlock(&DRM(mem_lock));
return retcode;
}
int DRM(unbind_agp)(agp_memory *handle)
{
int alloc_count;
int free_count;
int retcode = -EINVAL;
if (!handle) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Attempt to unbind NULL AGP handle\n");
return retcode;
}
if ((retcode = DRM(agp_unbind_memory)(handle))) return retcode;
spin_lock(&DRM(mem_lock));
free_count = ++DRM(mem_stats)[DRM_MEM_BOUNDAGP].free_count;
alloc_count = DRM(mem_stats)[DRM_MEM_BOUNDAGP].succeed_count;
DRM(mem_stats)[DRM_MEM_BOUNDAGP].bytes_freed
+= handle->page_count << PAGE_SHIFT;
spin_unlock(&DRM(mem_lock));
if (free_count > alloc_count) {
DRM_MEM_ERROR(DRM_MEM_BOUNDAGP,
"Excess frees: %d frees, %d allocs\n",
free_count, alloc_count);
}
return retcode;
}
#endif