drm/linux-core/drm_memory.c

322 lines
7.9 KiB
C

/**
* \file drm_memory.c
* Memory management wrappers for DRM
*
* \author Rickard E. (Rik) Faith <faith@valinux.com>
* \author Gareth Hughes <gareth@valinux.com>
*/
/*
* Created: Thu Feb 4 14:00:34 1999 by faith@valinux.com
*
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/highmem.h>
#include "drmP.h"
static struct {
spinlock_t lock;
drm_u64_t cur_used;
drm_u64_t low_threshold;
drm_u64_t high_threshold;
} drm_memctl = {
.lock = SPIN_LOCK_UNLOCKED
};
static inline size_t drm_size_align(size_t size) {
size_t tmpSize = 4;
if (size > PAGE_SIZE)
return PAGE_ALIGN(size);
while(tmpSize < size)
tmpSize <<= 1;
return (size_t) tmpSize;
}
int drm_alloc_memctl(size_t size)
{
int ret;
unsigned long a_size = drm_size_align(size);
spin_lock(&drm_memctl.lock);
ret = ((drm_memctl.cur_used + a_size) > drm_memctl.high_threshold) ?
-ENOMEM : 0;
if (!ret)
drm_memctl.cur_used += a_size;
spin_unlock(&drm_memctl.lock);
return ret;
}
EXPORT_SYMBOL(drm_alloc_memctl);
void drm_free_memctl(size_t size)
{
unsigned long a_size = drm_size_align(size);
spin_lock(&drm_memctl.lock);
drm_memctl.cur_used -= a_size;
spin_unlock(&drm_memctl.lock);
}
EXPORT_SYMBOL(drm_free_memctl);
void drm_query_memctl(drm_u64_t *cur_used,
drm_u64_t *low_threshold,
drm_u64_t *high_threshold)
{
spin_lock(&drm_memctl.lock);
*cur_used = drm_memctl.cur_used;
*low_threshold = drm_memctl.low_threshold;
*high_threshold = drm_memctl.high_threshold;
spin_unlock(&drm_memctl.lock);
}
EXPORT_SYMBOL(drm_query_memctl);
void drm_init_memctl(size_t p_low_threshold,
size_t p_high_threshold,
size_t unit_size)
{
spin_lock(&drm_memctl.lock);
drm_memctl.cur_used = 0;
drm_memctl.low_threshold = p_low_threshold * unit_size;
drm_memctl.high_threshold = p_high_threshold * unit_size;
spin_unlock(&drm_memctl.lock);
}
#ifndef DEBUG_MEMORY
/** No-op. */
void drm_mem_init(void)
{
}
/**
* Called when "/proc/dri/%dev%/mem" is read.
*
* \param buf output buffer.
* \param start start of output data.
* \param offset requested start offset.
* \param len requested number of bytes.
* \param eof whether there is no more data to return.
* \param data private data.
* \return number of written bytes.
*
* No-op.
*/
int drm_mem_info(char *buf, char **start, off_t offset,
int len, int *eof, void *data)
{
return 0;
}
/** Wrapper around kmalloc() */
void *drm_calloc(size_t nmemb, size_t size, int area)
{
return kcalloc(nmemb, size, GFP_KERNEL);
}
EXPORT_SYMBOL(drm_calloc);
/** Wrapper around kmalloc() and kfree() */
void *drm_realloc(void *oldpt, size_t oldsize, size_t size, int area)
{
void *pt;
if (!(pt = kmalloc(size, GFP_KERNEL)))
return NULL;
if (oldpt && oldsize) {
memcpy(pt, oldpt, oldsize);
kfree(oldpt);
}
return pt;
}
/**
* Allocate pages.
*
* \param order size order.
* \param area memory area. (Not used.)
* \return page address on success, or zero on failure.
*
* Allocate and reserve free pages.
*/
unsigned long drm_alloc_pages(int order, int area)
{
unsigned long address;
unsigned long bytes = PAGE_SIZE << order;
unsigned long addr;
unsigned int sz;
address = __get_free_pages(GFP_KERNEL, order);
if (!address)
return 0;
/* Zero */
memset((void *)address, 0, bytes);
/* Reserve */
for (addr = address, sz = bytes;
sz > 0; addr += PAGE_SIZE, sz -= PAGE_SIZE) {
SetPageReserved(virt_to_page(addr));
}
return address;
}
/**
* Free pages.
*
* \param address address of the pages to free.
* \param order size order.
* \param area memory area. (Not used.)
*
* Unreserve and free pages allocated by alloc_pages().
*/
void drm_free_pages(unsigned long address, int order, int area)
{
unsigned long bytes = PAGE_SIZE << order;
unsigned long addr;
unsigned int sz;
if (!address)
return;
/* Unreserve */
for (addr = address, sz = bytes;
sz > 0; addr += PAGE_SIZE, sz -= PAGE_SIZE) {
ClearPageReserved(virt_to_page(addr));
}
free_pages(address, order);
}
#if __OS_HAS_AGP
static void *agp_remap(unsigned long offset, unsigned long size,
drm_device_t * dev)
{
unsigned long *phys_addr_map, i, num_pages =
PAGE_ALIGN(size) / PAGE_SIZE;
struct drm_agp_mem *agpmem;
struct page **page_map;
void *addr;
size = PAGE_ALIGN(size);
#ifdef __alpha__
offset -= dev->hose->mem_space->start;
#endif
for (agpmem = dev->agp->memory; agpmem; agpmem = agpmem->next)
if (agpmem->bound <= offset
&& (agpmem->bound + (agpmem->pages << PAGE_SHIFT)) >=
(offset + size))
break;
if (!agpmem)
return NULL;
/*
* OK, we're mapping AGP space on a chipset/platform on which memory accesses by
* the CPU do not get remapped by the GART. We fix this by using the kernel's
* page-table instead (that's probably faster anyhow...).
*/
/* note: use vmalloc() because num_pages could be large... */
page_map = vmalloc(num_pages * sizeof(struct page *));
if (!page_map)
return NULL;
phys_addr_map =
agpmem->memory->memory + (offset - agpmem->bound) / PAGE_SIZE;
for (i = 0; i < num_pages; ++i)
page_map[i] = pfn_to_page(phys_addr_map[i] >> PAGE_SHIFT);
addr = vmap(page_map, num_pages, VM_IOREMAP, PAGE_AGP);
vfree(page_map);
return addr;
}
/** Wrapper around agp_allocate_memory() */
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,11)
DRM_AGP_MEM *drm_alloc_agp(drm_device_t *dev, int pages, u32 type)
{
return drm_agp_allocate_memory(pages, type);
}
#else
DRM_AGP_MEM *drm_alloc_agp(drm_device_t *dev, int pages, u32 type)
{
return drm_agp_allocate_memory(dev->agp->bridge, pages, type);
}
#endif
/** Wrapper around agp_free_memory() */
int drm_free_agp(DRM_AGP_MEM * handle, int pages)
{
return drm_agp_free_memory(handle) ? 0 : -EINVAL;
}
/** Wrapper around agp_bind_memory() */
int drm_bind_agp(DRM_AGP_MEM * handle, unsigned int start)
{
return drm_agp_bind_memory(handle, start);
}
/** Wrapper around agp_unbind_memory() */
int drm_unbind_agp(DRM_AGP_MEM * handle)
{
return drm_agp_unbind_memory(handle);
}
#else /* __OS_HAS_AGP*/
static void *agp_remap(unsigned long offset, unsigned long size,
drm_device_t * dev)
{
return NULL;
}
#endif /* agp */
#endif /* debug_memory */
void drm_core_ioremap(struct drm_map *map, struct drm_device *dev)
{
if (drm_core_has_AGP(dev) &&
dev->agp && dev->agp->cant_use_aperture && map->type == _DRM_AGP)
map->handle = agp_remap(map->offset, map->size, dev);
else
map->handle = ioremap(map->offset, map->size);
}
EXPORT_SYMBOL_GPL(drm_core_ioremap);
void drm_core_ioremapfree(struct drm_map *map, struct drm_device *dev)
{
if (!map->handle || !map->size)
return;
if (drm_core_has_AGP(dev) &&
dev->agp && dev->agp->cant_use_aperture && map->type == _DRM_AGP)
vunmap(map->handle);
else
iounmap(map->handle);
}
EXPORT_SYMBOL_GPL(drm_core_ioremapfree);