drm/shared-core/nouveau_mem.c

692 lines
17 KiB
C
Raw Normal View History

/*
* Copyright (C) The Weather Channel, Inc. 2002. All Rights Reserved.
* Copyright 2005 Stephane Marchesin
*
* The Weather Channel (TM) funded Tungsten Graphics to develop the
* initial release of the Radeon 8500 driver under the XFree86 license.
* This notice must be preserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors:
* Keith Whitwell <keith@tungstengraphics.com>
*/
#include "drmP.h"
#include "drm.h"
#include "drm_sarea.h"
#include "nouveau_drv.h"
static struct mem_block *split_block(struct mem_block *p, uint64_t start, uint64_t size,
DRMFILE filp)
{
/* Maybe cut off the start of an existing block */
if (start > p->start) {
struct mem_block *newblock =
drm_alloc(sizeof(*newblock), DRM_MEM_BUFS);
if (!newblock)
goto out;
newblock->start = start;
newblock->size = p->size - (start - p->start);
newblock->filp = NULL;
newblock->next = p->next;
newblock->prev = p;
p->next->prev = newblock;
p->next = newblock;
p->size -= newblock->size;
p = newblock;
}
/* Maybe cut off the end of an existing block */
if (size < p->size) {
struct mem_block *newblock =
drm_alloc(sizeof(*newblock), DRM_MEM_BUFS);
if (!newblock)
goto out;
newblock->start = start + size;
newblock->size = p->size - size;
newblock->filp = NULL;
newblock->next = p->next;
newblock->prev = p;
p->next->prev = newblock;
p->next = newblock;
p->size = size;
}
out:
/* Our block is in the middle */
p->filp = filp;
return p;
}
struct mem_block *nouveau_mem_alloc_block(struct mem_block *heap, uint64_t size,
int align2, DRMFILE filp)
{
struct mem_block *p;
uint64_t mask = (1 << align2) - 1;
if (!heap)
return NULL;
list_for_each(p, heap) {
uint64_t start = (p->start + mask) & ~mask;
if (p->filp == 0 && start + size <= p->start + p->size)
return split_block(p, start, size, filp);
}
return NULL;
}
static struct mem_block *find_block(struct mem_block *heap, uint64_t start)
{
struct mem_block *p;
list_for_each(p, heap)
if (p->start == start)
return p;
return NULL;
}
void nouveau_mem_free_block(struct mem_block *p)
{
p->filp = NULL;
/* Assumes a single contiguous range. Needs a special filp in
* 'heap' to stop it being subsumed.
*/
if (p->next->filp == 0) {
struct mem_block *q = p->next;
p->size += q->size;
p->next = q->next;
p->next->prev = p;
drm_free(q, sizeof(*q), DRM_MEM_BUFS);
}
if (p->prev->filp == 0) {
struct mem_block *q = p->prev;
q->size += p->size;
q->next = p->next;
q->next->prev = q;
drm_free(p, sizeof(*q), DRM_MEM_BUFS);
}
}
/* Initialize. How to check for an uninitialized heap?
*/
int nouveau_mem_init_heap(struct mem_block **heap, uint64_t start,
uint64_t size)
{
struct mem_block *blocks = drm_alloc(sizeof(*blocks), DRM_MEM_BUFS);
if (!blocks)
return DRM_ERR(ENOMEM);
*heap = drm_alloc(sizeof(**heap), DRM_MEM_BUFS);
if (!*heap) {
drm_free(blocks, sizeof(*blocks), DRM_MEM_BUFS);
return DRM_ERR(ENOMEM);
}
blocks->start = start;
blocks->size = size;
blocks->filp = NULL;
blocks->next = blocks->prev = *heap;
memset(*heap, 0, sizeof(**heap));
(*heap)->filp = (DRMFILE) - 1;
(*heap)->next = (*heap)->prev = blocks;
return 0;
}
/*
* Free all blocks associated with the releasing filp
*/
void nouveau_mem_release(DRMFILE filp, struct mem_block *heap)
{
struct mem_block *p;
if (!heap || !heap->next)
return;
list_for_each(p, heap) {
if (p->filp == filp)
p->filp = NULL;
}
/* Assumes a single contiguous range. Needs a special filp in
* 'heap' to stop it being subsumed.
*/
list_for_each(p, heap) {
while ((p->filp == 0) && (p->next->filp == 0) && (p->next!=heap)) {
struct mem_block *q = p->next;
p->size += q->size;
p->next = q->next;
p->next->prev = p;
drm_free(q, sizeof(*q), DRM_MEM_DRIVER);
}
}
}
/*
* Cleanup everything
*/
static void nouveau_mem_takedown(struct mem_block **heap)
{
struct mem_block *p;
if (!*heap)
return;
for (p = (*heap)->next; p != *heap;) {
struct mem_block *q = p;
p = p->next;
drm_free(q, sizeof(*q), DRM_MEM_DRIVER);
}
drm_free(*heap, sizeof(**heap), DRM_MEM_DRIVER);
*heap = NULL;
}
void nouveau_mem_close(struct drm_device *dev)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
nouveau_mem_takedown(&dev_priv->agp_heap);
nouveau_mem_takedown(&dev_priv->fb_heap);
}
/* returns the amount of FB ram in bytes */
uint64_t nouveau_mem_fb_amount(struct drm_device *dev)
{
drm_nouveau_private_t *dev_priv=dev->dev_private;
switch(dev_priv->card_type)
{
case NV_03:
switch(NV_READ(NV03_BOOT_0)&NV03_BOOT_0_RAM_AMOUNT)
{
case NV03_BOOT_0_RAM_AMOUNT_8MB:
case NV03_BOOT_0_RAM_AMOUNT_8MB_SDRAM:
return 8*1024*1024;
case NV03_BOOT_0_RAM_AMOUNT_4MB:
return 4*1024*1024;
case NV03_BOOT_0_RAM_AMOUNT_2MB:
return 2*1024*1024;
}
break;
case NV_04:
case NV_05:
if (NV_READ(NV03_BOOT_0) & 0x00000100) {
return (((NV_READ(NV03_BOOT_0) >> 12) & 0xf)*2+2)*1024*1024;
} else
switch(NV_READ(NV03_BOOT_0)&NV03_BOOT_0_RAM_AMOUNT)
{
case NV04_BOOT_0_RAM_AMOUNT_32MB:
return 32*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_16MB:
return 16*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_8MB:
return 8*1024*1024;
case NV04_BOOT_0_RAM_AMOUNT_4MB:
return 4*1024*1024;
}
break;
case NV_10:
case NV_17:
case NV_20:
case NV_30:
case NV_40:
case NV_44:
case NV_50:
default:
// XXX won't work on BSD because of pci_read_config_dword
if (dev_priv->flags&NV_NFORCE) {
uint32_t mem;
pci_read_config_dword(dev->pdev, 0x7C, &mem);
return (uint64_t)(((mem >> 6) & 31) + 1)*1024*1024;
} else if(dev_priv->flags&NV_NFORCE2) {
uint32_t mem;
pci_read_config_dword(dev->pdev, 0x84, &mem);
return (uint64_t)(((mem >> 4) & 127) + 1)*1024*1024;
} else {
uint64_t mem;
mem=(NV_READ(NV04_FIFO_DATA)&NV10_FIFO_DATA_RAM_AMOUNT_MB_MASK) >> NV10_FIFO_DATA_RAM_AMOUNT_MB_SHIFT;
return mem*1024*1024;
}
break;
}
DRM_ERROR("Unable to detect video ram size. Please report your setup to " DRIVER_EMAIL "\n");
return 0;
}
int nouveau_mem_init(struct drm_device *dev)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
uint32_t fb_size;
dev_priv->agp_phys=0;
dev_priv->fb_phys=0;
/* init AGP */
dev_priv->agp_heap=NULL;
if (drm_device_is_agp(dev))
{
int err;
drm_agp_info_t info;
drm_agp_mode_t mode;
drm_agp_buffer_t agp_req;
drm_agp_binding_t bind_req;
err = drm_agp_acquire(dev);
if (err) {
DRM_ERROR("Unable to acquire AGP: %d\n", err);
goto no_agp;
}
err = drm_agp_info(dev, &info);
if (err) {
DRM_ERROR("Unable to get AGP info: %d\n", err);
goto no_agp;
}
/* see agp.h for the AGPSTAT_* modes available */
mode.mode = info.mode;
err = drm_agp_enable(dev, mode);
if (err) {
DRM_ERROR("Unable to enable AGP: %d\n", err);
goto no_agp;
}
agp_req.size = info.aperture_size;
agp_req.type = 0;
err = drm_agp_alloc(dev, &agp_req);
if (err) {
DRM_ERROR("Unable to alloc AGP: %d\n", err);
goto no_agp;
}
bind_req.handle = agp_req.handle;
bind_req.offset = 0;
err = drm_agp_bind(dev, &bind_req);
if (err) {
DRM_ERROR("Unable to bind AGP: %d\n", err);
goto no_agp;
}
if (nouveau_mem_init_heap(&dev_priv->agp_heap,
info.aperture_base,
info.aperture_size))
goto no_agp;
dev_priv->agp_phys = info.aperture_base;
dev_priv->agp_available_size = info.aperture_size;
}
no_agp:
/* setup a mtrr over the FB */
dev_priv->fb_mtrr = drm_mtrr_add(drm_get_resource_start(dev, 1),
nouveau_mem_fb_amount(dev),
DRM_MTRR_WC);
/* Init FB */
dev_priv->fb_phys=drm_get_resource_start(dev,1);
fb_size = nouveau_mem_fb_amount(dev);
/* On at least NV40, RAMIN is actually at the end of vram.
* We don't want to allocate this... */
if (dev_priv->card_type >= NV_40)
fb_size -= dev_priv->ramin_size;
dev_priv->fb_available_size = fb_size;
DRM_DEBUG("Available VRAM: %dKiB\n", fb_size>>10);
if (fb_size>256*1024*1024) {
/* On cards with > 256Mb, you can't map everything.
* So we create a second FB heap for that type of memory */
if (nouveau_mem_init_heap(&dev_priv->fb_heap,
drm_get_resource_start(dev,1),
256*1024*1024))
return DRM_ERR(ENOMEM);
if (nouveau_mem_init_heap(&dev_priv->fb_nomap_heap,
drm_get_resource_start(dev,1) +
256*1024*1024,
fb_size-256*1024*1024))
return DRM_ERR(ENOMEM);
} else {
if (nouveau_mem_init_heap(&dev_priv->fb_heap,
drm_get_resource_start(dev,1),
fb_size))
return DRM_ERR(ENOMEM);
dev_priv->fb_nomap_heap=NULL;
}
return 0;
}
struct mem_block* nouveau_mem_alloc(struct drm_device *dev, int alignment, uint64_t size, int flags, DRMFILE filp)
{
struct mem_block *block;
int type;
drm_nouveau_private_t *dev_priv = dev->dev_private;
/*
* Make things easier on ourselves: all allocations are page-aligned.
* We need that to map allocated regions into the user space
*/
if (alignment < PAGE_SHIFT)
alignment = PAGE_SHIFT;
/*
* Warn about 0 sized allocations, but let it go through. It'll return 1 page
*/
if (size == 0)
DRM_INFO("warning : 0 byte allocation\n");
/*
* Keep alloc size a multiple of the page size to keep drm_addmap() happy
*/
if (size & (~PAGE_MASK))
size = ((size/PAGE_SIZE) + 1) * PAGE_SIZE;
if (flags&NOUVEAU_MEM_AGP) {
type=NOUVEAU_MEM_AGP;
block = nouveau_mem_alloc_block(dev_priv->agp_heap, size,
alignment, filp);
if (block) goto alloc_ok;
}
if (flags&(NOUVEAU_MEM_FB|NOUVEAU_MEM_FB_ACCEPTABLE)) {
type=NOUVEAU_MEM_FB;
if (!(flags&NOUVEAU_MEM_MAPPED)) {
block = nouveau_mem_alloc_block(dev_priv->fb_nomap_heap,
size, alignment, filp);
if (block) goto alloc_ok;
}
block = nouveau_mem_alloc_block(dev_priv->fb_heap, size,
alignment, filp);
if (block) goto alloc_ok;
}
if (flags&NOUVEAU_MEM_AGP_ACCEPTABLE) {
type=NOUVEAU_MEM_AGP;
block = nouveau_mem_alloc_block(dev_priv->agp_heap, size,
alignment, filp);
if (block) goto alloc_ok;
}
return NULL;
alloc_ok:
block->flags=type;
if (flags&NOUVEAU_MEM_MAPPED)
{
int ret;
block->flags|=NOUVEAU_MEM_MAPPED;
if (type == NOUVEAU_MEM_AGP)
ret = drm_addmap(dev, block->start - dev->agp->base, block->size,
_DRM_AGP, 0, &block->map);
else
ret = drm_addmap(dev, block->start, block->size,
_DRM_FRAME_BUFFER, 0, &block->map);
if (ret) {
nouveau_mem_free_block(block);
return NULL;
}
}
DRM_INFO("allocated 0x%llx\n", block->start);
return block;
}
void nouveau_mem_free(struct drm_device* dev, struct mem_block* block)
{
DRM_INFO("freeing 0x%llx\n", block->start);
if (block->flags&NOUVEAU_MEM_MAPPED)
drm_rmmap(dev, block->map);
nouveau_mem_free_block(block);
}
static void
nouveau_instmem_determine_amount(struct drm_device *dev)
2006-11-29 16:31:42 -07:00
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
int i;
2006-11-29 16:31:42 -07:00
/* Figure out how much instance memory we need */
switch (dev_priv->card_type) {
case NV_40:
/* We'll want more instance memory than this on some NV4x cards.
* There's a 16MB aperture to play with that maps onto the end
* of vram. For now, only reserve a small piece until we know
* more about what each chipset requires.
*/
dev_priv->ramin_size = (1*1024* 1024);
break;
default:
/*XXX: what *are* the limits on <NV40 cards?, and does RAMIN
* exist in vram on those cards as well?
*/
dev_priv->ramin_size = (512*1024);
break;
}
DRM_DEBUG("RAMIN size: %dKiB\n", dev_priv->ramin_size>>10);
/* Clear all of it, except the BIOS image that's in the first 64KiB */
if (dev_priv->ramin) {
for (i=(64*1024); i<dev_priv->ramin_size; i+=4)
DRM_WRITE32(dev_priv->ramin, i, 0x00000000);
} else {
for (i=(64*1024); i<dev_priv->ramin_size; i+=4)
DRM_WRITE32(dev_priv->mmio, NV_RAMIN + i, 0x00000000);
}
}
static void
nouveau_instmem_configure_fixed_tables(struct drm_device *dev)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
/* FIFO hash table (RAMHT)
* use 4k hash table at RAMIN+0x10000
* TODO: extend the hash table
*/
dev_priv->ramht_offset = 0x10000;
dev_priv->ramht_bits = 9;
dev_priv->ramht_size = (1 << dev_priv->ramht_bits);
DRM_DEBUG("RAMHT offset=0x%x, size=%d\n", dev_priv->ramht_offset,
dev_priv->ramht_size);
/* FIFO runout table (RAMRO) - 512k at 0x11200 */
dev_priv->ramro_offset = 0x11200;
dev_priv->ramro_size = 512;
DRM_DEBUG("RAMRO offset=0x%x, size=%d\n", dev_priv->ramro_offset,
dev_priv->ramro_size);
/* FIFO context table (RAMFC)
* NV40 : Not sure exactly how to position RAMFC on some cards,
* 0x30002 seems to position it at RAMIN+0x20000 on these
* cards. RAMFC is 4kb (32 fifos, 128byte entries).
* Others: Position RAMFC at RAMIN+0x11400
*/
switch(dev_priv->card_type)
{
case NV_50:
case NV_40:
case NV_44:
dev_priv->ramfc_offset = 0x20000;
dev_priv->ramfc_size = nouveau_fifo_number(dev) *
nouveau_fifo_ctx_size(dev);
break;
case NV_30:
case NV_20:
case NV_17:
case NV_10:
case NV_04:
case NV_03:
default:
dev_priv->ramfc_offset = 0x11400;
dev_priv->ramfc_size = nouveau_fifo_number(dev) *
nouveau_fifo_ctx_size(dev);
break;
}
DRM_DEBUG("RAMFC offset=0x%x, size=%d\n", dev_priv->ramfc_offset,
dev_priv->ramfc_size);
}
int nouveau_instmem_init(struct drm_device *dev)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
uint32_t offset;
int ret = 0;
nouveau_instmem_determine_amount(dev);
nouveau_instmem_configure_fixed_tables(dev);
/* Create a heap to manage RAMIN allocations, we don't allocate
* the space that was reserved for RAMHT/FC/RO.
*/
offset = dev_priv->ramfc_offset + dev_priv->ramfc_size;
ret = nouveau_mem_init_heap(&dev_priv->ramin_heap,
offset, dev_priv->ramin_size - offset);
2006-11-29 16:31:42 -07:00
if (ret) {
dev_priv->ramin_heap = NULL;
DRM_ERROR("Failed to init RAMIN heap\n");
}
return ret;
}
struct mem_block *nouveau_instmem_alloc(struct drm_device *dev,
uint32_t size, uint32_t align)
{
drm_nouveau_private_t *dev_priv = dev->dev_private;
struct mem_block *block;
if (!dev_priv->ramin_heap) {
DRM_ERROR("instmem alloc called without init\n");
return NULL;
}
block = nouveau_mem_alloc_block(dev_priv->ramin_heap, size, align,
(DRMFILE)-2);
2006-11-29 16:31:42 -07:00
if (block) {
block->flags = NOUVEAU_MEM_INSTANCE;
DRM_DEBUG("instance(size=%d, align=%d) alloc'd at 0x%08x\n",
size, (1<<align), (uint32_t)block->start);
2006-11-29 16:31:42 -07:00
}
return block;
}
void nouveau_instmem_free(struct drm_device *dev, struct mem_block *block)
{
if (dev && block) {
nouveau_mem_free_block(block);
2006-11-29 16:31:42 -07:00
}
}
2007-01-07 05:56:45 -07:00
uint32_t nouveau_instmem_r32(drm_nouveau_private_t *dev_priv,
struct mem_block *mem, int index)
{
uint32_t ofs = (uint32_t)mem->start + (index<<2);
if (dev_priv->ramin) {
#if defined(__powerpc__)
return in_be32((void __iomem *)(dev_priv->ramin)->handle + ofs);
#else
return DRM_READ32(dev_priv->ramin, ofs);
#endif
} else {
return NV_READ(NV_RAMIN+ofs);
}
}
void nouveau_instmem_w32(drm_nouveau_private_t *dev_priv,
struct mem_block *mem, int index, uint32_t val)
{
uint32_t ofs = (uint32_t)mem->start + (index<<2);
if (dev_priv->ramin) {
#if defined(__powerpc__)
out_be32((void __iomem *)(dev_priv->ramin)->handle + ofs, val);
#else
DRM_WRITE32(dev_priv->ramin, ofs, val);
#endif
} else {
NV_WRITE(NV_RAMIN+ofs, val);
}
}
/*
* Ioctls
*/
int nouveau_ioctl_mem_alloc(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_nouveau_private_t *dev_priv = dev->dev_private;
drm_nouveau_mem_alloc_t alloc;
struct mem_block *block;
if (!dev_priv) {
DRM_ERROR("%s called with no initialization\n", __FUNCTION__);
return DRM_ERR(EINVAL);
}
DRM_COPY_FROM_USER_IOCTL(alloc, (drm_nouveau_mem_alloc_t __user *) data,
sizeof(alloc));
block=nouveau_mem_alloc(dev, alloc.alignment, alloc.size, alloc.flags, filp);
if (!block)
return DRM_ERR(ENOMEM);
alloc.region_offset=block->start;
alloc.flags=block->flags;
DRM_COPY_TO_USER_IOCTL((drm_nouveau_mem_alloc_t __user *) data, alloc, sizeof(alloc));
return 0;
}
int nouveau_ioctl_mem_free(DRM_IOCTL_ARGS)
{
DRM_DEVICE;
drm_nouveau_private_t *dev_priv = dev->dev_private;
drm_nouveau_mem_free_t memfree;
struct mem_block *block;
DRM_COPY_FROM_USER_IOCTL(memfree, (drm_nouveau_mem_free_t __user *) data,
sizeof(memfree));
block=NULL;
if (memfree.flags&NOUVEAU_MEM_FB)
block = find_block(dev_priv->fb_heap, memfree.region_offset);
else if (memfree.flags&NOUVEAU_MEM_AGP)
block = find_block(dev_priv->agp_heap, memfree.region_offset);
if (!block)
return DRM_ERR(EFAULT);
if (block->filp != filp)
return DRM_ERR(EPERM);
nouveau_mem_free(dev, block);
return 0;
}