pread and pwrite must update the memory domains to ensure consistency with
the GPU. At some point, it should be possible to avoid clflush through this
path, but that isn't working for me.
Now, the LRU list has objects that are completely done rendering and ready
to kick out, while the execution list has things with active rendering,
which have associated cookies and reference counts on them.
Domain information is about buffer relationships, not buffer contents. That
means a relocation contains the domain information as it knows how the
source buffer references the target buffer.
This also adds the set_domain ioctl so that user space can move buffers to
the cpu domain.
If objects on the lru aren't ref counted, they'll get pulled from the gtt as
soon as they are freed. This change does cause objects to get stuck in the
gtt until they're forced out by new requests. The lru should get cleaned
when the irq occurs.
Conflicts:
linux-core/drm_compat.c
linux-core/drm_compat.h
linux-core/drm_ttm.c
shared-core/i915_dma.c
Bump driver minor to 13 due to introduction of new
relocation type.
My 965GM gets interrupts stuck when using the old PIPE_VBLANK interrupt.
Switch to the PIPE_EVENT interrupt mechanism, and set the PIPE*STAT
registers to use START_VBLANK on 965 and VBLANK on previous chips.
Make sure we have enough room for all the GR registers or we'll end up
clobbering the AR index register (which should actually be harmless
unless the BIOS is making an assumption about it).
On resume, if the interrupt state isn't restored correctly, we may end
up with a flood of unexpected or ill-timed interrupts, which could cause
the kernel to disable the interrupt or vblank events to happen at the
wrong time. So save/restore them properly.
We need to return an accurate vblank count to the callers of
->get_vblank_counter, and in the Intel case the actual frame count
register isn't udpated until the next active line is displayed, so we
need to return one more than the frame count register if we're currently
in a vblank period.
However, none of the various ways of doing this is working yet, so
disable the logic for now. This may result in a few missed events, but
should fix the hangs some people have seen due to the current code
tripping the wraparound logic in drm_update_vblank_count.
The frame count registers don't increment until the start of the next
frame, so make sure we return an incremented count if called during the
actual vblank period.
As DRM_DEBUG macro already prints out the __FUNCTION__ string (see
drivers/char/drm/drmP.h), it is not worth doing this again. At some
other places the ending "\n" was added.
airlied:- I cleaned up a few that this patch missed also
Flags pending validation were stored in a misleadingly named field, 'mask'.
As 'mask' is already used to indicate pieces of a flags field which are
changing, it seems better to use a name reflecting the actual purpose of
this field. I chose 'proposed_flags' as they may not actually end up in
'flags', and in an case will be modified when they are moved over.
This affects the API, but not ABI of the user-mode interface.
Conflicts:
linux-core/drmP.h
linux-core/drm_drv.c
linux-core/drm_irq.c
shared-core/i915_drv.h
shared-core/i915_irq.c
shared-core/mga_drv.h
shared-core/mga_irq.c
shared-core/radeon_drv.h
shared-core/radeon_irq.c
Merge in the latest master bits and update the remaining drivers (except
mach64 which math_b is working on). Also remove the 9xx hack from the i915
driver; it seems to be correct.
Add suspend/resume support to the i915 driver. Moves some of the
initialization into the driver load routine, and fixes up places where we
assumed no dev_private existed in some of the cleanup paths. This allows
us to suspend/resume properly even if X isn't running.
This adds the initial i915 superioctl interface. The interface should be
sufficent even if the implementation may needs fixes/optimisations internally
in the drm wrt caching etc.
Modify the TTM backend bind arguments.
Export a number of functions needed for driver-specific super-ioctls.
Add a function to map buffer objects from the kernel, regardless of where they're
currently placed.
A number of error fixes.
We can figure out which pipe a given plane is mapped to by looking at the
display control registers instead of tracking it in a new SAREA private field.
If this becomes a performance problem, we could move to an ioctl based solution
by adding a new parameter for the DDX to set (defaulting to the old behavior if
the param was never set of course).
This mod makes the SAREA track plane to pipe mappings and corrects the name of
the plane info variables (they were mislabeled as pipe info since until now all
code assumed a direct mapping between planes and pipes).
It also updates the flip ioctl argument to take a set of planes rather than
pipes, since planes are flipped while pipes generate vblank events.