This interface was defined completely wrong, however userspace has only
ever used 4 values from it (0x1, 0x2, 0x3 and 0x6), so fix the interface to do what userspace actually expected but define new defines for new users to use
it properly.
Previously, the R300_CMD_WAIT command would write the passed directly to the
hardware. However this is incorrect because the R300_WAIT_* values used are
internal interface values that do not map directly to the hardware.
The new function I have added translates the R300_WAIT_* values into appropriate
values for the hardware before writing the register.
Thanks to John Bridgman for pointing this out. :-)
More or less a workaround for issues on some chipsets where a context
switch results in critical data in PRAMIN being overwritten by the GPU.
The correct fix is known, but may take some time before it's a feasible
option.
This is the correct fix for the RS690 and hopefully the dma coherent work.
For now we limit everybody to a 32-bit DMA mask but it is possible for
RS690 to use a 40-bit DMA mask for the GART table itself,
and the PCIE cards can use 40-bits for the table entries.
Signed-off-by: Dave Airlie <airlied@redhat.com>
DMA command submission. It's worth remembering that all new bright ideas on how
to make this command reader work properly and according to docs
will probably fail :( Bring in some old code.
The i915_vblank_swap() function schedules an automatic buffer swap
upon receipt of the vertical sync interrupt. Such an operation is
lengthy so it can't be allowed to happen in normal interrupt context,
thus the DRM implements this by scheduling the work in a kernel
softirq-scheduled tasklet. In order for the buffer swap to work
safely, the DRM's central lock must be taken, via a call to
drm_lock_take() located in drivers/char/drm/drm_irq.c within the
function drm_locked_tasklet_func(). The lock-taking logic uses a
non-interrupt-blocking spinlock to implement the manipulations needed
to take the lock. This semantic would be safe if all attempts to use
the spinlock only happen from process context. However this buffer
swap happens from softirq context which is really a form of interrupt
context. Thus we have an unsafe situation, in that
drm_locked_tasklet_func() can block on a spinlock already taken by a
thread in process context which will never get scheduled again because
of the blocked softirq tasklet. This wedges the kernel hard.
To trigger this bug, run a dual-head cloned mode configuration which
uses the i915 drm, then execute an opengl application which
synchronizes buffer swaps against the vertical sync interrupt. In my
testing, a lockup always results after running anywhere from 5 minutes
to an hour and a half. I believe dual-head is needed to really
trigger the problem because then the vertical sync interrupt handling
is no longer predictable (due to being interrupt-sourced from two
different heads running at different speeds). This raises the
probability of the tasklet trying to run while the userspace DRI is
doing things to the GPU (and manipulating the DRM lock).
The fix is to change the relevant spinlock semantics to be the
interrupt-blocking form. After this change I am no longer able to
trigger the lockup; the longest test run so far was 20 hours (test
stopped after that point).
Note: I have examined the places where this spinlock is being
employed; all are reasonably short bounded sequences and should be
suitable for interrupts being blocked without impacting overall kernel
interrupt response latency.
Signed-off-by: Mike Isely <isely@pobox.com>
If we ever want to be able to use the 3D engine we have no choice. It
appears that the tiling setup (required for 3D on G8x) is in the page tables.
The immediate benefit of this change however is that it's now not possible
for a client to use the GPU to render over the top of important engine setup
tables, which also live in VRAM.
G8x VRAM size is limited to 512MiB at the moment, as we use a 1-1 mapping
of real vram pages to their offset within the start of a channel's VRAM
DMA object and only populate a single PDE for VRAM use.