It would be nice if one day the DRM driver was the canonical source for
register definitions and core macros. To that end, this patch cleans
things up quite a bit, removing redundant definitions (some with
different names referring to the same register) and generally tidying up
the header file.
Conflicts:
linux-core/drm_compat.c
linux-core/drm_compat.h
linux-core/drm_ttm.c
shared-core/i915_dma.c
Bump driver minor to 13 due to introduction of new
relocation type.
This change adds a driver feature that for i915 is controlled by a module
parameter. You now need to do insmod i915.ko modeset=1 to enable it the
modesetting paths.
It also fixes up lots of X paths. I can run my new DDX driver on this code
with and without modesetting enabled
As DRM_DEBUG macro already prints out the __FUNCTION__ string (see
drivers/char/drm/drmP.h), it is not worth doing this again. At some
other places the ending "\n" was added.
airlied:- I cleaned up a few that this patch missed also
Document parameters and usage for drm_bo_handle_validate. Change parameter
order to match drm_bo_do_validate (fence_class has been moved to after
flags, hint and mask values). Existing users of this function have been
changed, but out-of-tree users must be modified separately.
One of the costs of superioctl has been the need to perform relocations
inside the kernel. The cost of mapping the buffers to the CPU and writing
data is fairly high, especially if those buffers have been mapped and read
by the GPU.
If we assume that buffers don't move around very often, we can have the
client compute the relocations itself using the previous GPU address. When
that object doesn't move, the kernel can skip computing and writing the
updated data.
Here's a patch which adds a new field to struct drm_bo_info_req called
'presumed_offset', and a new DRM_BO_HINT_PRESUMED_OFFSET that is set when
this field has been filled in by the client.
There are two separate optimizations performed when the presumed_offset is
correct:
1. i915_exec_reloc checks to see if all previous buffer offsets were guessed
correctly. If so, there's no need for it to look at *any* of the
relocations for a buffer. When this happens, it skips the whole
relocation process, simply returning success.
2. i915_apply_reloc checks to see if the target buffer offset was guessed
correctly. If so, it skips mapping the relocatee, computing the
relocation and writing the value. If no relocations are needed, the
relocatee should never be mapped to the CPU, and so the kernel shouldn't
need to wait for any fences to pass.