- Also add watchos support to CMake (SDL does not support this platform yet)
Co-authored-by: Ravbug <ravbug@users.noreply.github.com>
Co-authored-by: Anonymous Maarten <anonymous.maarten@gmail.com>
Co-authored-by: Anonymous Maarten <madebr@users.noreply.github.com>
Adds functions to query the system's realtime clock, convert time intervals to/from a calendar date and time in either UTC or the local time, and perform time related calculations.
An SDL_Time type (a time interval represented in nanoseconds), and SDL_DateTime struct (broken down calendar date and time) were added to facilitate this functionality.
Querying the system time results in a value expressed in nanoseconds since the Unix epoch (Jan 1, 1970) in UTC +0000. Conversions to and from the various platform epochs and units are performed when required.
Any direct handling of timezones and DST were intentionally avoided. The offset from UTC is provided when converting from UTC to a local time by calculating the difference between the original UTC and the resulting local time, but no other timezone or DST information is used.
The preferred date formatting and 12/24 hour time for the system locale can be retrieved via global preferences.
Helper functions for obtaining the day of week or day or year for calendar date, and getting the number of days in a month in a given year are provided for convenience. These are simple, but useful for performing various time related calculations.
An automated test for time conversion is included, as is a simple standalone test to display the current system date and time onscreen along with a calendar, the rendering of which demonstrates the use of the utility functions (press up/down to increment or decrement the current month, and keys 1-5 to change the date and time formats).
This allows color operations to happen in linear space between sRGB input and sRGB output. This is currently supported on the direct3d11, direct3d12 and opengl renderers.
This is a good resource on blending in linear space vs sRGB space:
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
Also added testcolorspace to verify colorspace changes
Add the ability to import and wrap external surfaces from external toolkits such as Qt and GTK.
Wayland surfaces and windows are more intrinsically tied to the client library than other windowing systems, so it is necessary to provide a way to initialize SDL with an existing wl_display object, which needs to be set prior to video system initialization, or export the internal SDL wl_display object for use by external applications or toolkits. For this, the global property SDL_PROPERTY_GLOBAL_VIDEO_WAYLAND_WL_DISPLAY_POINTER is used.
A Wayland example was added to testnative, and a basic example of Qt 6 interoperation is provided in the Wayland readme to demonstrate the use of external windows with both SDL owning the wl_display, and an external toolkit owning it.
Allow for the creation of SDL windows with a roleless surface that applications can use for their own purposes, such as with a windowing protocol other than XDG toplevel.
The property `wayland.surface_role_custom` will create a window with a surface that SDL can render to and handles input for, but is not associated with a toplevel window, so applications can use it for their own, custom purposes (e.g. wlr_layer_shell).
A test/minimal example is included in tests/testwaylandcustom.c
Don't do it in POST_BUILD to avoid multiple parallel builds
stepping on each others toes.
Also don't use copy_if_different, but unconditionally copy it.
The build system should take care of dependencies.
This patch adds an API for querying pressure-
sensitive pens, cf. SDL_pen.h:
- Enumerate all pens
- Get pen capabilities, names, GUIDs
- Distinguishes pens and erasers
- Distinguish attached and detached pens
- Pressure and tilt support
- Rotation, distance, throttle wheel support
(throttle wheel untested)
- Pen type and meta-information reporting
(partially tested)
Pen event reporting:
- Three new event structures: PenTip, PenMotion, and
PenButton
- Report location with sub-pixel precision
- Include axis and button status, is-eraser flag
Internal pen tracker, intended to be independent
of platform APIs, cf. SDL_pen_c.h:
- Track known pens
- Handle pen hotplugging
Automatic test:
- testautomation_pen.c
Other features:
- XInput2 implementation, incl. hotplugging
- Wayland implementation, incl. hotplugging
- Backward compatibility: pen events default to
emulating pens with mouse ID SDL_PEN_MOUSEID
- Can be toggled via SDL_HINT_PEN_NOT_MOUSE
- Test/demo program (testpen)
- Wacom pen feature identification by pen ID
Acknowledgements:
- Ping Cheng (Wacom) provided extensive feedback
on Wacom pen features and detection so that
hopefully untested Wacom devices have a
realistic chance of working out of the box.
This lets apps optionally have a handful of callbacks for their entry points instead of a single main function. If used, the actual main/SDL_main/whatever entry point will be implemented in the single-header library SDL_main.h and the app will implement four separate functions:
First:
int SDL_AppInit(int argc, char **argv);
This will be called once before anything else. argc/argv work like they always do. If this returns 0, the app runs. If it returns < 0, the app calls SDL_AppQuit and terminates with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. This function should not go into an infinite mainloop; it should do any one-time startup it requires and then return.
Then:
int SDL_AppIterate(void);
This is called over and over, possibly at the refresh rate of the display or some other metric that the platform dictates. This is where the heart of your app runs. It should return as quickly as reasonably possible, but it's not a "run one memcpy and that's all the time you have" sort of thing. The app should do any game updates, and render a frame of video. If it returns < 0, SDL will call SDL_AppQuit and terminate the process with an exit code that reports an error to the platform. If it returns > 0, the app calls SDL_AppQuit and terminates with an exit code that reports success to the platform. If it returns 0, then SDL_AppIterate will be called again at some regular frequency. The platform may choose to run this more or less (perhaps less in the background, etc), or it might just call this function in a loop as fast as possible. You do not check the event queue in this function (SDL_AppEvent exists for that).
Next:
int SDL_AppEvent(const SDL_Event *event);
This will be called once for each event pushed into the SDL queue. This may be called from any thread, and possibly in parallel to SDL_AppIterate. The fields in event do not need to be free'd (as you would normally need to do for SDL_EVENT_DROP_FILE, etc), and your app should not call SDL_PollEvent, SDL_PumpEvent, etc, as SDL will manage this for you. Return values are the same as from SDL_AppIterate(), so you can terminate in response to SDL_EVENT_QUIT, etc.
Finally:
void SDL_AppQuit(void);
This is called once before terminating the app--assuming the app isn't being forcibly killed or crashed--as a last chance to clean up. After this returns, SDL will call SDL_Quit so the app doesn't have to (but it's safe for the app to call it, too). Process termination proceeds as if the app returned normally from main(), so atexit handles will run, if your platform supports that.
The app does not implement SDL_main if using this. To turn this on, define SDL_MAIN_USE_CALLBACKS before including SDL_main.h. Defines like SDL_MAIN_HANDLED and SDL_MAIN_NOIMPL are also respected for callbacks, if the app wants to do some sort of magic main implementation thing.
In theory, on most platforms these can be implemented in the app itself, but this saves some #ifdefs in the app and lets everyone struggle less against some platforms, and might be more efficient in the long run, too.
On some platforms, it's possible this is the only reasonable way to go, but we haven't actually hit one that 100% requires it yet (but we will, if we want to write a RetroArch backend, for example).
Using the callback entry points works on every platform, because on platforms that don't require them, we can fake them with a simple loop in an internal implementation of the usual SDL_main.
The primary way we expect people to write SDL apps is with SDL_main, and this is not intended to replace it. If the app chooses to use this, it just removes some platform-specific details they might have to otherwise manage, and maybe removes a barrier to entry on some future platform.
Fixes#6785.
Reference PR #8247.
According to #8088 it has no value as an automated test, and by
default it takes long enough to hit the default test timeout.
Resolves: #8088
Signed-off-by: Simon McVittie <smcv@collabora.com>
main features:
- No more sdl-build-options/sdl-shared-build-options/sdl-global-options
- Dependency information is stored on SDL3-collector for sdl3.pc
- Use helper functions to modify the SDL targets;
- sdl_sources to add sources
- sdl_glob_sources to add glob soruces
- sdl_link_dependency to add a link dependency that might also
appear in sdl3.pc/SDL3Config.cmake
- sdl_compile_definitions to add macro's
- sdl_compile_options for compile options
- sdl_include_directories for include directories
They avoid repeated checks for existence of the SDL targets
- A nice feature of the previous is the ability to generate
a sdl3.pc or SDL3Config.cmake that describes its dependencies
accurately.
various:
- remove duplicate libc symbol list
- add CheckVulkan
- remove unused HAVE_MPROTECT
- add checks for getpagesize