drm/shared-core/mga_state.c

1140 lines
29 KiB
C
Raw Normal View History

2001-02-15 01:12:14 -07:00
/* mga_state.c -- State support for MGA G200/G400 -*- linux-c -*-
2000-02-22 08:43:59 -07:00
* Created: Thu Jan 27 02:53:43 2000 by jhartmann@precisioninsight.com
*/
/*
2000-02-22 08:43:59 -07:00
* Copyright 1999 Precision Insight, Inc., Cedar Park, Texas.
2000-06-08 08:38:22 -06:00
* Copyright 2000 VA Linux Systems, Inc., Sunnyvale, California.
2000-02-22 08:43:59 -07:00
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
2000-09-06 14:56:34 -06:00
*
2000-02-22 08:43:59 -07:00
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
2000-09-06 14:56:34 -06:00
*
2000-02-22 08:43:59 -07:00
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
2001-02-15 01:12:14 -07:00
* VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
2000-02-22 08:43:59 -07:00
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
2001-02-15 01:12:14 -07:00
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
2000-02-22 08:43:59 -07:00
*
2001-02-15 01:12:14 -07:00
* Authors:
* Jeff Hartmann <jhartmann@valinux.com>
* Keith Whitwell <keith@tungstengraphics.com>
2000-02-22 08:43:59 -07:00
*
2001-02-15 01:12:14 -07:00
* Rewritten by:
* Gareth Hughes <gareth@valinux.com>
2000-02-22 08:43:59 -07:00
*/
2000-02-22 08:43:59 -07:00
#include "drmP.h"
2002-04-09 15:54:56 -06:00
#include "drm.h"
#include "mga_drm.h"
2000-02-22 08:43:59 -07:00
#include "mga_drv.h"
2001-02-15 01:12:14 -07:00
/* ================================================================
* DMA hardware state programming functions
*/
2000-08-18 13:03:19 -06:00
static void mga_emit_clip_rect(drm_mga_private_t * dev_priv,
struct drm_clip_rect * box)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
unsigned int pitch = dev_priv->front_pitch;
DMA_LOCALS;
2000-04-04 16:08:14 -06:00
BEGIN_DMA(2);
2000-02-22 08:43:59 -07:00
2001-02-15 01:12:14 -07:00
/* Force reset of DWGCTL on G400 (eliminates clip disable bit).
*/
2005-10-20 16:41:26 -06:00
if (dev_priv->chipset >= MGA_CARD_TYPE_G400) {
DMA_BLOCK(MGA_DWGCTL, ctx->dwgctl,
MGA_LEN + MGA_EXEC, 0x80000000,
MGA_DWGCTL, ctx->dwgctl,
MGA_LEN + MGA_EXEC, 0x80000000);
2000-04-04 16:08:14 -06:00
}
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
2004-10-16 05:21:56 -06:00
MGA_CXBNDRY, ((box->x2 - 1) << 16) | box->x1,
MGA_YTOP, box->y1 * pitch, MGA_YBOT, (box->y2 - 1) * pitch);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-02-22 08:43:59 -07:00
}
static __inline__ void mga_g200_emit_context(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
DMA_LOCALS;
2000-04-04 16:08:14 -06:00
BEGIN_DMA(3);
2000-04-04 16:08:14 -06:00
DMA_BLOCK(MGA_DSTORG, ctx->dstorg,
MGA_MACCESS, ctx->maccess,
MGA_PLNWT, ctx->plnwt, MGA_DWGCTL, ctx->dwgctl);
2000-04-04 16:08:14 -06:00
DMA_BLOCK(MGA_ALPHACTRL, ctx->alphactrl,
MGA_FOGCOL, ctx->fogcolor,
MGA_WFLAG, ctx->wflag, MGA_ZORG, dev_priv->depth_offset);
2000-04-04 16:08:14 -06:00
DMA_BLOCK(MGA_FCOL, ctx->fcol,
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000, MGA_DMAPAD, 0x00000000);
2000-02-22 08:43:59 -07:00
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-02-22 08:43:59 -07:00
}
static __inline__ void mga_g400_emit_context(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
DMA_LOCALS;
2000-02-22 08:43:59 -07:00
BEGIN_DMA(4);
2000-02-22 08:43:59 -07:00
DMA_BLOCK(MGA_DSTORG, ctx->dstorg,
MGA_MACCESS, ctx->maccess,
2004-10-16 04:54:58 -06:00
MGA_PLNWT, ctx->plnwt,
MGA_DWGCTL, ctx->dwgctl);
2000-02-22 08:43:59 -07:00
DMA_BLOCK(MGA_ALPHACTRL, ctx->alphactrl,
MGA_FOGCOL, ctx->fogcolor,
2004-10-16 04:54:58 -06:00
MGA_WFLAG, ctx->wflag,
MGA_ZORG, dev_priv->depth_offset);
2000-02-22 08:43:59 -07:00
DMA_BLOCK(MGA_WFLAG1, ctx->wflag,
MGA_TDUALSTAGE0, ctx->tdualstage0,
2004-10-16 04:54:58 -06:00
MGA_TDUALSTAGE1, ctx->tdualstage1,
MGA_FCOL, ctx->fcol);
DMA_BLOCK(MGA_STENCIL, ctx->stencil,
MGA_STENCILCTL, ctx->stencilctl,
2004-10-16 04:54:58 -06:00
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-02-22 08:43:59 -07:00
}
static __inline__ void mga_g200_emit_tex0(drm_mga_private_t * dev_priv)
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_texture_regs_t *tex = &sarea_priv->tex_state[0];
DMA_LOCALS;
BEGIN_DMA(4);
DMA_BLOCK(MGA_TEXCTL2, tex->texctl2,
MGA_TEXCTL, tex->texctl,
MGA_TEXFILTER, tex->texfilter,
MGA_TEXBORDERCOL, tex->texbordercol);
DMA_BLOCK(MGA_TEXORG, tex->texorg,
MGA_TEXORG1, tex->texorg1,
2004-10-16 04:54:58 -06:00
MGA_TEXORG2, tex->texorg2,
MGA_TEXORG3, tex->texorg3);
DMA_BLOCK(MGA_TEXORG4, tex->texorg4,
MGA_TEXWIDTH, tex->texwidth,
2004-10-16 04:54:58 -06:00
MGA_TEXHEIGHT, tex->texheight,
MGA_WR24, tex->texwidth);
DMA_BLOCK(MGA_WR34, tex->texheight,
MGA_TEXTRANS, 0x0000ffff,
2004-10-16 04:54:58 -06:00
MGA_TEXTRANSHIGH, 0x0000ffff,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
static __inline__ void mga_g400_emit_tex0(drm_mga_private_t * dev_priv)
2001-02-15 01:12:14 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_texture_regs_t *tex = &sarea_priv->tex_state[0];
DMA_LOCALS;
/* printk("mga_g400_emit_tex0 %x %x %x\n", tex->texorg, */
/* tex->texctl, tex->texctl2); */
BEGIN_DMA(6);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXCTL2, tex->texctl2 | MGA_G400_TC2_MAGIC,
MGA_TEXCTL, tex->texctl,
MGA_TEXFILTER, tex->texfilter,
MGA_TEXBORDERCOL, tex->texbordercol);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXORG, tex->texorg,
MGA_TEXORG1, tex->texorg1,
2004-10-16 04:54:58 -06:00
MGA_TEXORG2, tex->texorg2,
MGA_TEXORG3, tex->texorg3);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXORG4, tex->texorg4,
MGA_TEXWIDTH, tex->texwidth,
2004-10-16 04:54:58 -06:00
MGA_TEXHEIGHT, tex->texheight,
MGA_WR49, 0x00000000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR57, 0x00000000,
MGA_WR53, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_WR61, 0x00000000,
MGA_WR52, MGA_G400_WR_MAGIC);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR60, MGA_G400_WR_MAGIC,
MGA_WR54, tex->texwidth | MGA_G400_WR_MAGIC,
MGA_WR62, tex->texheight | MGA_G400_WR_MAGIC,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_TEXTRANS, 0x0000ffff,
MGA_TEXTRANSHIGH, 0x0000ffff);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
static __inline__ void mga_g400_emit_tex1(drm_mga_private_t * dev_priv)
2001-02-15 01:12:14 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_texture_regs_t *tex = &sarea_priv->tex_state[1];
DMA_LOCALS;
/* printk("mga_g400_emit_tex1 %x %x %x\n", tex->texorg, */
/* tex->texctl, tex->texctl2); */
BEGIN_DMA(5);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXCTL2, (tex->texctl2 |
MGA_MAP1_ENABLE |
MGA_G400_TC2_MAGIC),
MGA_TEXCTL, tex->texctl,
MGA_TEXFILTER, tex->texfilter,
MGA_TEXBORDERCOL, tex->texbordercol);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXORG, tex->texorg,
MGA_TEXORG1, tex->texorg1,
2004-10-16 04:54:58 -06:00
MGA_TEXORG2, tex->texorg2,
MGA_TEXORG3, tex->texorg3);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_TEXORG4, tex->texorg4,
MGA_TEXWIDTH, tex->texwidth,
2004-10-16 04:54:58 -06:00
MGA_TEXHEIGHT, tex->texheight,
MGA_WR49, 0x00000000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR57, 0x00000000,
MGA_WR53, 0x00000000,
MGA_WR61, 0x00000000,
MGA_WR52, tex->texwidth | MGA_G400_WR_MAGIC);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR60, tex->texheight | MGA_G400_WR_MAGIC,
MGA_TEXTRANS, 0x0000ffff,
MGA_TEXTRANSHIGH, 0x0000ffff,
MGA_TEXCTL2, tex->texctl2 | MGA_G400_TC2_MAGIC);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
static __inline__ void mga_g200_emit_pipe(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
unsigned int pipe = sarea_priv->warp_pipe;
DMA_LOCALS;
BEGIN_DMA(3);
DMA_BLOCK(MGA_WIADDR, MGA_WMODE_SUSPEND,
MGA_WVRTXSZ, 0x00000007,
2004-10-16 04:54:58 -06:00
MGA_WFLAG, 0x00000000,
MGA_WR24, 0x00000000);
2000-04-04 16:08:14 -06:00
DMA_BLOCK(MGA_WR25, 0x00000100,
MGA_WR34, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_WR42, 0x0000ffff,
MGA_WR60, 0x0000ffff);
2001-02-15 01:12:14 -07:00
/* Padding required to to hardware bug.
2000-02-22 08:43:59 -07:00
*/
DMA_BLOCK(MGA_DMAPAD, 0xffffffff,
MGA_DMAPAD, 0xffffffff,
MGA_DMAPAD, 0xffffffff,
MGA_WIADDR, (dev_priv->warp_pipe_phys[pipe] |
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
MGA_WMODE_START | dev_priv->wagp_enable));
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
static __inline__ void mga_g400_emit_pipe(drm_mga_private_t * dev_priv)
2001-02-15 01:12:14 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
unsigned int pipe = sarea_priv->warp_pipe;
DMA_LOCALS;
/* printk("mga_g400_emit_pipe %x\n", pipe); */
BEGIN_DMA(10);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WIADDR2, MGA_WMODE_SUSPEND,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
if (pipe & MGA_T2) {
DMA_BLOCK(MGA_WVRTXSZ, 0x00001e09,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x1e000000);
2000-02-22 08:43:59 -07:00
} else {
if (dev_priv->warp_pipe & MGA_T2) {
/* Flush the WARP pipe */
DMA_BLOCK(MGA_YDST, 0x00000000,
MGA_FXLEFT, 0x00000000,
MGA_FXRIGHT, 0x00000001,
MGA_DWGCTL, MGA_DWGCTL_FLUSH);
DMA_BLOCK(MGA_LEN + MGA_EXEC, 0x00000001,
MGA_DWGSYNC, 0x00007000,
MGA_TEXCTL2, MGA_G400_TC2_MAGIC,
MGA_LEN + MGA_EXEC, 0x00000000);
DMA_BLOCK(MGA_TEXCTL2, (MGA_DUALTEX |
MGA_G400_TC2_MAGIC),
MGA_LEN + MGA_EXEC, 0x00000000,
MGA_TEXCTL2, MGA_G400_TC2_MAGIC,
MGA_DMAPAD, 0x00000000);
}
DMA_BLOCK(MGA_WVRTXSZ, 0x00001807,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000);
DMA_BLOCK(MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x00000000,
MGA_WACCEPTSEQ, 0x18000000);
}
DMA_BLOCK(MGA_WFLAG, 0x00000000,
MGA_WFLAG1, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_WR56, MGA_G400_WR56_MAGIC,
MGA_DMAPAD, 0x00000000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR49, 0x00000000, /* tex0 */
MGA_WR57, 0x00000000, /* tex0 */
MGA_WR53, 0x00000000, /* tex1 */
MGA_WR61, 0x00000000); /* tex1 */
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_WR54, MGA_G400_WR_MAGIC, /* tex0 width */
MGA_WR62, MGA_G400_WR_MAGIC, /* tex0 height */
MGA_WR52, MGA_G400_WR_MAGIC, /* tex1 width */
MGA_WR60, MGA_G400_WR_MAGIC); /* tex1 height */
2001-02-15 01:12:14 -07:00
/* Padding required to to hardware bug */
DMA_BLOCK(MGA_DMAPAD, 0xffffffff,
MGA_DMAPAD, 0xffffffff,
MGA_DMAPAD, 0xffffffff,
MGA_WIADDR2, (dev_priv->warp_pipe_phys[pipe] |
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
MGA_WMODE_START | dev_priv->wagp_enable));
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-02-22 08:43:59 -07:00
}
static void mga_g200_emit_state(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
unsigned int dirty = sarea_priv->dirty;
2000-02-22 08:43:59 -07:00
if (sarea_priv->warp_pipe != dev_priv->warp_pipe) {
mga_g200_emit_pipe(dev_priv);
2001-02-15 01:12:14 -07:00
dev_priv->warp_pipe = sarea_priv->warp_pipe;
}
if (dirty & MGA_UPLOAD_CONTEXT) {
mga_g200_emit_context(dev_priv);
2001-02-15 01:12:14 -07:00
sarea_priv->dirty &= ~MGA_UPLOAD_CONTEXT;
}
if (dirty & MGA_UPLOAD_TEX0) {
mga_g200_emit_tex0(dev_priv);
2001-02-15 01:12:14 -07:00
sarea_priv->dirty &= ~MGA_UPLOAD_TEX0;
}
2000-02-22 08:43:59 -07:00
}
static void mga_g400_emit_state(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2000-04-04 16:08:14 -06:00
unsigned int dirty = sarea_priv->dirty;
2001-02-15 01:12:14 -07:00
int multitex = sarea_priv->warp_pipe & MGA_T2;
2000-02-22 08:43:59 -07:00
if (sarea_priv->warp_pipe != dev_priv->warp_pipe) {
mga_g400_emit_pipe(dev_priv);
2001-02-15 01:12:14 -07:00
dev_priv->warp_pipe = sarea_priv->warp_pipe;
}
2000-04-04 16:08:14 -06:00
if (dirty & MGA_UPLOAD_CONTEXT) {
mga_g400_emit_context(dev_priv);
2001-02-15 01:12:14 -07:00
sarea_priv->dirty &= ~MGA_UPLOAD_CONTEXT;
}
2000-04-04 16:08:14 -06:00
if (dirty & MGA_UPLOAD_TEX0) {
mga_g400_emit_tex0(dev_priv);
2001-02-15 01:12:14 -07:00
sarea_priv->dirty &= ~MGA_UPLOAD_TEX0;
}
2000-04-04 16:08:14 -06:00
if ((dirty & MGA_UPLOAD_TEX1) && multitex) {
mga_g400_emit_tex1(dev_priv);
2001-02-15 01:12:14 -07:00
sarea_priv->dirty &= ~MGA_UPLOAD_TEX1;
2000-04-04 16:08:14 -06:00
}
2000-02-22 08:43:59 -07:00
}
2001-02-15 01:12:14 -07:00
/* ================================================================
* SAREA state verification
*/
2000-02-22 08:43:59 -07:00
/* Disallow all write destinations except the front and backbuffer.
*/
static int mga_verify_context(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
if (ctx->dstorg != dev_priv->front_offset &&
ctx->dstorg != dev_priv->back_offset) {
DRM_ERROR("*** bad DSTORG: %x (front %x, back %x)\n\n",
ctx->dstorg, dev_priv->front_offset,
dev_priv->back_offset);
2001-02-15 01:12:14 -07:00
ctx->dstorg = 0;
return -EINVAL;
2000-04-04 16:08:14 -06:00
}
2000-02-22 08:43:59 -07:00
return 0;
}
/* Disallow texture reads from PCI space.
*/
static int mga_verify_tex(drm_mga_private_t * dev_priv, int unit)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_texture_regs_t *tex = &sarea_priv->tex_state[unit];
unsigned int org;
2000-02-22 08:43:59 -07:00
2001-02-15 01:12:14 -07:00
org = tex->texorg & (MGA_TEXORGMAP_MASK | MGA_TEXORGACC_MASK);
if (org == (MGA_TEXORGMAP_SYSMEM | MGA_TEXORGACC_PCI)) {
DRM_ERROR("*** bad TEXORG: 0x%x, unit %d\n", tex->texorg, unit);
2001-02-15 01:12:14 -07:00
tex->texorg = 0;
return -EINVAL;
}
2000-02-22 08:43:59 -07:00
return 0;
}
static int mga_verify_state(drm_mga_private_t * dev_priv)
2000-02-22 08:43:59 -07:00
{
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2000-04-04 16:08:14 -06:00
unsigned int dirty = sarea_priv->dirty;
2001-02-15 01:12:14 -07:00
int ret = 0;
2000-02-22 08:43:59 -07:00
if (sarea_priv->nbox > MGA_NR_SAREA_CLIPRECTS)
sarea_priv->nbox = MGA_NR_SAREA_CLIPRECTS;
2000-02-22 08:43:59 -07:00
if (dirty & MGA_UPLOAD_CONTEXT)
ret |= mga_verify_context(dev_priv);
2000-02-22 08:43:59 -07:00
if (dirty & MGA_UPLOAD_TEX0)
ret |= mga_verify_tex(dev_priv, 0);
2000-02-22 08:43:59 -07:00
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
if (dev_priv->chipset >= MGA_CARD_TYPE_G400) {
if (dirty & MGA_UPLOAD_TEX1)
ret |= mga_verify_tex(dev_priv, 1);
if (dirty & MGA_UPLOAD_PIPE)
ret |= (sarea_priv->warp_pipe > MGA_MAX_G400_PIPES);
} else {
if (dirty & MGA_UPLOAD_PIPE)
ret |= (sarea_priv->warp_pipe > MGA_MAX_G200_PIPES);
}
2000-02-22 08:43:59 -07:00
return (ret == 0);
2000-02-22 08:43:59 -07:00
}
static int mga_verify_iload(drm_mga_private_t * dev_priv,
unsigned int dstorg, unsigned int length)
2000-04-04 16:08:14 -06:00
{
if (dstorg < dev_priv->texture_offset ||
dstorg + length > (dev_priv->texture_offset +
dev_priv->texture_size)) {
DRM_ERROR("*** bad iload DSTORG: 0x%x\n", dstorg);
return -EINVAL;
2000-04-04 16:08:14 -06:00
}
2001-02-15 01:12:14 -07:00
if (length & MGA_ILOAD_MASK) {
DRM_ERROR("*** bad iload length: 0x%x\n",
length & MGA_ILOAD_MASK);
return -EINVAL;
2001-02-15 01:12:14 -07:00
}
return 0;
}
static int mga_verify_blit(drm_mga_private_t * dev_priv,
unsigned int srcorg, unsigned int dstorg)
2001-02-15 01:12:14 -07:00
{
if ((srcorg & 0x3) == (MGA_SRCACC_PCI | MGA_SRCMAP_SYSMEM) ||
(dstorg & 0x3) == (MGA_SRCACC_PCI | MGA_SRCMAP_SYSMEM)) {
DRM_ERROR("*** bad blit: src=0x%x dst=0x%x\n", srcorg, dstorg);
return -EINVAL;
2000-04-04 16:08:14 -06:00
}
return 0;
2000-04-04 16:08:14 -06:00
}
2001-02-15 01:12:14 -07:00
/* ================================================================
*
*/
2007-07-15 20:32:51 -06:00
static void mga_dma_dispatch_clear(struct drm_device * dev, drm_mga_clear_t * clear)
2000-04-04 16:08:14 -06:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
2000-12-30 16:28:53 -07:00
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
struct drm_clip_rect *pbox = sarea_priv->boxes;
2001-02-15 01:12:14 -07:00
int nbox = sarea_priv->nbox;
int i;
DMA_LOCALS;
DRM_DEBUG("\n");
BEGIN_DMA(1);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DWGSYNC, 0x00007100,
MGA_DWGSYNC, 0x00007000);
ADVANCE_DMA();
for (i = 0; i < nbox; i++) {
struct drm_clip_rect *box = &pbox[i];
2001-02-15 01:12:14 -07:00
u32 height = box->y2 - box->y1;
DRM_DEBUG(" from=%d,%d to=%d,%d\n",
box->x1, box->y1, box->x2, box->y2);
2001-03-19 04:49:25 -07:00
if (clear->flags & MGA_FRONT) {
BEGIN_DMA(2);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_PLNWT, clear->color_mask,
MGA_YDSTLEN, (box->y1 << 16) | height,
MGA_FXBNDRY, (box->x2 << 16) | box->x1);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_FCOL, clear->clear_color,
MGA_DSTORG, dev_priv->front_offset,
MGA_DWGCTL + MGA_EXEC, dev_priv->clear_cmd);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
if (clear->flags & MGA_BACK) {
BEGIN_DMA(2);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_PLNWT, clear->color_mask,
MGA_YDSTLEN, (box->y1 << 16) | height,
MGA_FXBNDRY, (box->x2 << 16) | box->x1);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_FCOL, clear->clear_color,
MGA_DSTORG, dev_priv->back_offset,
MGA_DWGCTL + MGA_EXEC, dev_priv->clear_cmd);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
if (clear->flags & MGA_DEPTH) {
BEGIN_DMA(2);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_PLNWT, clear->depth_mask,
MGA_YDSTLEN, (box->y1 << 16) | height,
MGA_FXBNDRY, (box->x2 << 16) | box->x1);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_FCOL, clear->clear_depth,
MGA_DSTORG, dev_priv->depth_offset,
MGA_DWGCTL + MGA_EXEC, dev_priv->clear_cmd);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
}
}
BEGIN_DMA(1);
2001-02-15 01:12:14 -07:00
/* Force reset of DWGCTL */
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_PLNWT, ctx->plnwt,
MGA_DWGCTL, ctx->dwgctl);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
FLUSH_DMA();
2000-04-04 16:08:14 -06:00
}
2007-07-15 20:32:51 -06:00
static void mga_dma_dispatch_swap(struct drm_device * dev)
2001-02-15 01:12:14 -07:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
struct drm_clip_rect *pbox = sarea_priv->boxes;
2001-02-15 01:12:14 -07:00
int nbox = sarea_priv->nbox;
int i;
DMA_LOCALS;
DRM_DEBUG("\n");
2001-02-15 01:12:14 -07:00
2001-03-19 04:49:25 -07:00
sarea_priv->last_frame.head = dev_priv->prim.tail;
sarea_priv->last_frame.wrap = dev_priv->prim.last_wrap;
BEGIN_DMA(4 + nbox);
2001-03-19 04:49:25 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DWGSYNC, 0x00007100,
MGA_DWGSYNC, 0x00007000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DSTORG, dev_priv->front_offset,
MGA_MACCESS, dev_priv->maccess,
MGA_SRCORG, dev_priv->back_offset,
MGA_AR5, dev_priv->front_pitch);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_PLNWT, 0xffffffff,
MGA_DWGCTL, MGA_DWGCTL_COPY);
2001-02-15 01:12:14 -07:00
for (i = 0; i < nbox; i++) {
struct drm_clip_rect *box = &pbox[i];
2001-02-15 01:12:14 -07:00
u32 height = box->y2 - box->y1;
u32 start = box->y1 * dev_priv->front_pitch;
DRM_DEBUG(" from=%d,%d to=%d,%d\n",
box->x1, box->y1, box->x2, box->y2);
2001-03-19 04:49:25 -07:00
DMA_BLOCK(MGA_AR0, start + box->x2 - 1,
MGA_AR3, start + box->x1,
MGA_FXBNDRY, ((box->x2 - 1) << 16) | box->x1,
MGA_YDSTLEN + MGA_EXEC, (box->y1 << 16) | height);
2001-02-15 01:12:14 -07:00
}
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_PLNWT, ctx->plnwt,
2004-10-16 04:54:58 -06:00
MGA_SRCORG, dev_priv->front_offset,
MGA_DWGCTL, ctx->dwgctl);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
FLUSH_DMA();
DRM_DEBUG("... done.\n");
2001-02-15 01:12:14 -07:00
}
2007-07-15 21:42:11 -06:00
static void mga_dma_dispatch_vertex(struct drm_device * dev, struct drm_buf * buf)
2000-04-04 16:08:14 -06:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
2000-04-04 16:08:14 -06:00
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
u32 address = (u32) buf->bus_address;
u32 length = (u32) buf->used;
2000-04-04 16:08:14 -06:00
int i = 0;
2001-02-15 01:12:14 -07:00
DMA_LOCALS;
DRM_DEBUG("buf=%d used=%d\n", buf->idx, buf->used);
2000-04-04 16:08:14 -06:00
if (buf->used) {
buf_priv->dispatched = 1;
MGA_EMIT_STATE(dev_priv, sarea_priv->dirty);
do {
if (i < sarea_priv->nbox) {
mga_emit_clip_rect(dev_priv,
&sarea_priv->boxes[i]);
}
BEGIN_DMA(1);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_SECADDRESS, (address |
MGA_DMA_VERTEX),
MGA_SECEND, ((address + length) |
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
dev_priv->dma_access));
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
} while (++i < sarea_priv->nbox);
}
2001-02-15 01:12:14 -07:00
if (buf_priv->discard) {
AGE_BUFFER(buf_priv);
2001-02-15 01:12:14 -07:00
buf->pending = 0;
buf->used = 0;
buf_priv->dispatched = 0;
2000-04-04 16:08:14 -06:00
mga_freelist_put(dev, buf);
2001-02-15 01:12:14 -07:00
}
2000-04-04 16:08:14 -06:00
2001-02-15 01:12:14 -07:00
FLUSH_DMA();
}
2000-04-04 16:08:14 -06:00
2007-07-15 21:42:11 -06:00
static void mga_dma_dispatch_indices(struct drm_device * dev, struct drm_buf * buf,
unsigned int start, unsigned int end)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
u32 address = (u32) buf->bus_address;
int i = 0;
2001-02-15 01:12:14 -07:00
DMA_LOCALS;
DRM_DEBUG("buf=%d start=%d end=%d\n", buf->idx, start, end);
if (start != end) {
buf_priv->dispatched = 1;
2001-02-15 01:12:14 -07:00
MGA_EMIT_STATE(dev_priv, sarea_priv->dirty);
2000-04-04 16:08:14 -06:00
do {
if (i < sarea_priv->nbox) {
mga_emit_clip_rect(dev_priv,
&sarea_priv->boxes[i]);
2000-04-04 16:08:14 -06:00
}
BEGIN_DMA(1);
2000-04-04 16:08:14 -06:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_SETUPADDRESS, address + start,
MGA_SETUPEND, ((address + end) |
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
dev_priv->dma_access));
2000-02-22 08:43:59 -07:00
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
} while (++i < sarea_priv->nbox);
2001-02-15 01:12:14 -07:00
}
2000-04-04 16:08:14 -06:00
if (buf_priv->discard) {
AGE_BUFFER(buf_priv);
2001-02-15 01:12:14 -07:00
buf->pending = 0;
buf->used = 0;
buf_priv->dispatched = 0;
2000-04-04 16:08:14 -06:00
mga_freelist_put(dev, buf);
2000-04-04 16:08:14 -06:00
}
2001-02-15 01:12:14 -07:00
FLUSH_DMA();
2000-04-04 16:08:14 -06:00
}
2001-02-15 01:12:14 -07:00
/* This copies a 64 byte aligned agp region to the frambuffer with a
* standard blit, the ioctl needs to do checking.
*/
2007-07-15 21:42:11 -06:00
static void mga_dma_dispatch_iload(struct drm_device * dev, struct drm_buf * buf,
unsigned int dstorg, unsigned int length)
2000-04-04 16:08:14 -06:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
2001-02-15 01:12:14 -07:00
drm_mga_buf_priv_t *buf_priv = buf->dev_private;
drm_mga_context_regs_t *ctx = &dev_priv->sarea_priv->context_state;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
u32 srcorg = buf->bus_address | dev_priv->dma_access | MGA_SRCMAP_SYSMEM;
2001-02-15 01:12:14 -07:00
u32 y2;
DMA_LOCALS;
DRM_DEBUG("buf=%d used=%d\n", buf->idx, buf->used);
2001-02-15 01:12:14 -07:00
y2 = length / 64;
2000-04-04 16:08:14 -06:00
BEGIN_DMA(5);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DWGSYNC, 0x00007100,
MGA_DWGSYNC, 0x00007000);
DMA_BLOCK(MGA_DSTORG, dstorg,
2004-10-16 04:54:58 -06:00
MGA_MACCESS, 0x00000000,
MGA_SRCORG, srcorg,
MGA_AR5, 64);
2000-07-11 05:41:07 -06:00
DMA_BLOCK(MGA_PITCH, 64,
MGA_PLNWT, 0xffffffff,
2004-10-16 04:54:58 -06:00
MGA_DMAPAD, 0x00000000,
MGA_DWGCTL, MGA_DWGCTL_COPY);
DMA_BLOCK(MGA_AR0, 63,
MGA_AR3, 0,
2004-10-16 04:54:58 -06:00
MGA_FXBNDRY, (63 << 16) | 0,
MGA_YDSTLEN + MGA_EXEC, y2);
DMA_BLOCK(MGA_PLNWT, ctx->plnwt,
MGA_SRCORG, dev_priv->front_offset,
2004-10-16 04:54:58 -06:00
MGA_PITCH, dev_priv->front_pitch,
MGA_DWGSYNC, 0x00007000);
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-04-04 16:08:14 -06:00
AGE_BUFFER(buf_priv);
2001-02-15 01:12:14 -07:00
buf->pending = 0;
buf->used = 0;
buf_priv->dispatched = 0;
2000-04-04 16:08:14 -06:00
mga_freelist_put(dev, buf);
2001-02-15 01:12:14 -07:00
FLUSH_DMA();
2000-04-04 16:08:14 -06:00
}
2007-07-15 20:32:51 -06:00
static void mga_dma_dispatch_blit(struct drm_device * dev, drm_mga_blit_t * blit)
2000-12-30 16:28:53 -07:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2001-02-15 01:12:14 -07:00
drm_mga_context_regs_t *ctx = &sarea_priv->context_state;
struct drm_clip_rect *pbox = sarea_priv->boxes;
2001-02-15 01:12:14 -07:00
int nbox = sarea_priv->nbox;
2000-12-30 16:28:53 -07:00
u32 scandir = 0, i;
2001-02-15 01:12:14 -07:00
DMA_LOCALS;
DRM_DEBUG("\n");
2001-02-15 01:12:14 -07:00
BEGIN_DMA(4 + nbox);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
2004-10-16 04:54:58 -06:00
MGA_DWGSYNC, 0x00007100,
MGA_DWGSYNC, 0x00007000);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_DWGCTL, MGA_DWGCTL_COPY,
MGA_PLNWT, blit->planemask,
2004-10-16 04:54:58 -06:00
MGA_SRCORG, blit->srcorg,
MGA_DSTORG, blit->dstorg);
2001-02-15 01:12:14 -07:00
DMA_BLOCK(MGA_SGN, scandir,
MGA_MACCESS, dev_priv->maccess,
MGA_AR5, blit->ydir * blit->src_pitch,
MGA_PITCH, blit->dst_pitch);
2001-02-15 01:12:14 -07:00
for (i = 0; i < nbox; i++) {
2001-02-15 01:12:14 -07:00
int srcx = pbox[i].x1 + blit->delta_sx;
int srcy = pbox[i].y1 + blit->delta_sy;
int dstx = pbox[i].x1 + blit->delta_dx;
int dsty = pbox[i].y1 + blit->delta_dy;
2000-12-30 16:28:53 -07:00
int h = pbox[i].y2 - pbox[i].y1;
int w = pbox[i].x2 - pbox[i].x1 - 1;
int start;
if (blit->ydir == -1) {
2001-02-15 01:12:14 -07:00
srcy = blit->height - srcy - 1;
2000-12-30 16:28:53 -07:00
}
2001-02-15 01:12:14 -07:00
start = srcy * blit->src_pitch + srcx;
2000-12-30 16:28:53 -07:00
DMA_BLOCK(MGA_AR0, start + w,
MGA_AR3, start,
MGA_FXBNDRY, ((dstx + w) << 16) | (dstx & 0xffff),
MGA_YDSTLEN + MGA_EXEC, (dsty << 16) | h);
2000-12-30 16:28:53 -07:00
}
/* Do something to flush AGP?
*/
/* Force reset of DWGCTL */
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_PLNWT, ctx->plnwt,
2004-10-16 04:54:58 -06:00
MGA_PITCH, dev_priv->front_pitch,
MGA_DWGCTL, ctx->dwgctl);
2000-12-30 16:28:53 -07:00
2001-02-15 01:12:14 -07:00
ADVANCE_DMA();
2000-12-30 16:28:53 -07:00
}
2001-02-15 01:12:14 -07:00
/* ================================================================
*
*/
static int mga_dma_clear(struct drm_device *dev, void *data, struct drm_file *file_priv)
2000-12-30 16:28:53 -07:00
{
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
2000-12-30 16:28:53 -07:00
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_clear_t *clear = data;
2000-12-30 16:28:53 -07:00
LOCK_TEST_WITH_RETURN(dev, file_priv);
2000-12-30 16:28:53 -07:00
if (sarea_priv->nbox > MGA_NR_SAREA_CLIPRECTS)
2000-12-30 16:28:53 -07:00
sarea_priv->nbox = MGA_NR_SAREA_CLIPRECTS;
WRAP_TEST_WITH_RETURN(dev_priv);
2000-12-30 16:28:53 -07:00
mga_dma_dispatch_clear(dev, clear);
2000-12-30 16:28:53 -07:00
2001-02-15 01:12:14 -07:00
/* Make sure we restore the 3D state next time.
*/
dev_priv->sarea_priv->dirty |= MGA_UPLOAD_CONTEXT;
2000-12-30 16:28:53 -07:00
return 0;
}
static int mga_dma_swap(struct drm_device *dev, void *data, struct drm_file *file_priv)
2000-04-04 16:08:14 -06:00
{
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
2000-04-04 16:08:14 -06:00
LOCK_TEST_WITH_RETURN(dev, file_priv);
if (sarea_priv->nbox > MGA_NR_SAREA_CLIPRECTS)
sarea_priv->nbox = MGA_NR_SAREA_CLIPRECTS;
2000-04-04 16:08:14 -06:00
WRAP_TEST_WITH_RETURN(dev_priv);
2000-04-04 16:08:14 -06:00
mga_dma_dispatch_swap(dev);
2000-04-04 16:08:14 -06:00
/* Make sure we restore the 3D state next time.
*/
2001-02-15 01:12:14 -07:00
dev_priv->sarea_priv->dirty |= MGA_UPLOAD_CONTEXT;
return 0;
2000-04-04 16:08:14 -06:00
}
static int mga_dma_vertex(struct drm_device *dev, void *data, struct drm_file *file_priv)
2000-04-04 16:08:14 -06:00
{
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
2007-07-15 20:32:51 -06:00
struct drm_device_dma *dma = dev->dma;
struct drm_buf *buf;
drm_mga_buf_priv_t *buf_priv;
drm_mga_vertex_t *vertex = data;
2000-04-04 16:08:14 -06:00
LOCK_TEST_WITH_RETURN(dev, file_priv);
if (vertex->idx < 0 || vertex->idx > dma->buf_count)
return -EINVAL;
buf = dma->buflist[vertex->idx];
2000-04-04 16:08:14 -06:00
buf_priv = buf->dev_private;
buf->used = vertex->used;
buf_priv->discard = vertex->discard;
2001-02-15 01:12:14 -07:00
if (!mga_verify_state(dev_priv)) {
if (vertex->discard) {
if (buf_priv->dispatched == 1)
AGE_BUFFER(buf_priv);
2001-02-15 01:12:14 -07:00
buf_priv->dispatched = 0;
mga_freelist_put(dev, buf);
2001-02-15 01:12:14 -07:00
}
return -EINVAL;
2000-04-04 16:08:14 -06:00
}
WRAP_TEST_WITH_RETURN(dev_priv);
2001-02-15 01:12:14 -07:00
mga_dma_dispatch_vertex(dev, buf);
return 0;
2000-04-04 16:08:14 -06:00
}
static int mga_dma_indices(struct drm_device *dev, void *data, struct drm_file *file_priv)
2000-04-04 16:08:14 -06:00
{
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
2007-07-15 20:32:51 -06:00
struct drm_device_dma *dma = dev->dma;
struct drm_buf *buf;
drm_mga_buf_priv_t *buf_priv;
drm_mga_indices_t *indices = data;
2000-04-04 16:08:14 -06:00
LOCK_TEST_WITH_RETURN(dev, file_priv);
if (indices->idx < 0 || indices->idx > dma->buf_count)
return -EINVAL;
buf = dma->buflist[indices->idx];
buf_priv = buf->dev_private;
2000-04-04 16:08:14 -06:00
buf_priv->discard = indices->discard;
if (!mga_verify_state(dev_priv)) {
if (indices->discard) {
if (buf_priv->dispatched == 1)
AGE_BUFFER(buf_priv);
buf_priv->dispatched = 0;
mga_freelist_put(dev, buf);
}
return -EINVAL;
2000-04-04 16:08:14 -06:00
}
WRAP_TEST_WITH_RETURN(dev_priv);
2001-02-15 01:12:14 -07:00
mga_dma_dispatch_indices(dev, buf, indices->start, indices->end);
2000-04-04 16:08:14 -06:00
return 0;
2000-04-04 16:08:14 -06:00
}
static int mga_dma_iload(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
2007-07-15 20:32:51 -06:00
struct drm_device_dma *dma = dev->dma;
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
2007-07-15 21:42:11 -06:00
struct drm_buf *buf;
drm_mga_buf_priv_t *buf_priv;
drm_mga_iload_t *iload = data;
DRM_DEBUG("\n");
LOCK_TEST_WITH_RETURN(dev, file_priv);
2001-02-15 01:12:14 -07:00
#if 0
if (mga_do_wait_for_idle(dev_priv) < 0) {
if (MGA_DMA_DEBUG)
DRM_INFO("-EBUSY\n");
return -EBUSY;
}
#endif
if (iload->idx < 0 || iload->idx > dma->buf_count)
return -EINVAL;
buf = dma->buflist[iload->idx];
buf_priv = buf->dev_private;
if (mga_verify_iload(dev_priv, iload->dstorg, iload->length)) {
mga_freelist_put(dev, buf);
return -EINVAL;
}
WRAP_TEST_WITH_RETURN(dev_priv);
mga_dma_dispatch_iload(dev, buf, iload->dstorg, iload->length);
2001-02-15 01:12:14 -07:00
/* Make sure we restore the 3D state next time.
*/
dev_priv->sarea_priv->dirty |= MGA_UPLOAD_CONTEXT;
2000-04-04 16:08:14 -06:00
return 0;
}
static int mga_dma_blit(struct drm_device *dev, void *data, struct drm_file *file_priv)
2000-04-04 16:08:14 -06:00
{
2001-02-15 01:12:14 -07:00
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_sarea_t *sarea_priv = dev_priv->sarea_priv;
drm_mga_blit_t *blit = data;
DRM_DEBUG("\n");
2001-02-15 01:12:14 -07:00
LOCK_TEST_WITH_RETURN(dev, file_priv);
2000-04-04 16:08:14 -06:00
if (sarea_priv->nbox > MGA_NR_SAREA_CLIPRECTS)
2001-02-15 01:12:14 -07:00
sarea_priv->nbox = MGA_NR_SAREA_CLIPRECTS;
2000-04-04 16:08:14 -06:00
if (mga_verify_blit(dev_priv, blit->srcorg, blit->dstorg))
return -EINVAL;
WRAP_TEST_WITH_RETURN(dev_priv);
mga_dma_dispatch_blit(dev, blit);
2000-04-04 16:08:14 -06:00
2001-02-15 01:12:14 -07:00
/* Make sure we restore the 3D state next time.
*/
dev_priv->sarea_priv->dirty |= MGA_UPLOAD_CONTEXT;
2000-04-04 16:08:14 -06:00
2001-02-15 01:12:14 -07:00
return 0;
2000-04-04 16:08:14 -06:00
}
static int mga_getparam(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
drm_mga_private_t *dev_priv = dev->dev_private;
drm_mga_getparam_t *param = data;
int value;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
}
DRM_DEBUG("pid=%d\n", DRM_CURRENTPID);
switch (param->param) {
case MGA_PARAM_IRQ_NR:
value = dev->irq;
break;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
case MGA_PARAM_CARD_TYPE:
value = dev_priv->chipset;
break;
default:
return -EINVAL;
}
if (DRM_COPY_TO_USER(param->value, &value, sizeof(int))) {
DRM_ERROR("copy_to_user\n");
return -EFAULT;
}
return 0;
}
static int mga_set_fence(struct drm_device *dev, void *data, struct drm_file *file_priv)
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
u32 *fence = data;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
DMA_LOCALS;
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
}
DRM_DEBUG("pid=%d\n", DRM_CURRENTPID);
/* I would normal do this assignment in the declaration of fence,
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
* but dev_priv may be NULL.
*/
*fence = dev_priv->next_fence_to_post;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
dev_priv->next_fence_to_post++;
BEGIN_DMA(1);
DMA_BLOCK(MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_DMAPAD, 0x00000000,
MGA_SOFTRAP, 0x00000000);
ADVANCE_DMA();
return 0;
}
static int mga_wait_fence(struct drm_device *dev, void *data, struct drm_file *file_priv)
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
{
drm_mga_private_t *dev_priv = dev->dev_private;
u32 *fence = data;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
if (!dev_priv) {
DRM_ERROR("called with no initialization\n");
return -EINVAL;
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
}
DRM_DEBUG("pid=%d\n", DRM_CURRENTPID);
mga_driver_fence_wait(dev, fence);
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
return 0;
}
2007-07-15 20:32:51 -06:00
struct drm_ioctl_desc mga_ioctls[] = {
DRM_IOCTL_DEF(DRM_MGA_INIT, mga_dma_init, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
DRM_IOCTL_DEF(DRM_MGA_FLUSH, mga_dma_flush, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_RESET, mga_dma_reset, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_SWAP, mga_dma_swap, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_CLEAR, mga_dma_clear, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_VERTEX, mga_dma_vertex, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_INDICES, mga_dma_indices, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_ILOAD, mga_dma_iload, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_BLIT, mga_dma_blit, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_GETPARAM, mga_getparam, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_SET_FENCE, mga_set_fence, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_WAIT_FENCE, mga_wait_fence, DRM_AUTH),
DRM_IOCTL_DEF(DRM_MGA_DMA_BOOTSTRAP, mga_dma_bootstrap, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
Adds support for PCI cards to MGA DRM This patch adds serveral new ioctls and a new query to get_param query to support PCI MGA cards. Two ioctls were added to implement interrupt based waiting. With this change, the client-side driver no longer needs to map the primary DMA region or the MMIO region. Previously, end-of-frame waiting was done by busy waiting in the client-side driver until one of the MMIO registers (the current DMA pointer) matched a pointer to the end of primary DMA space. By using interrupts, the busy waiting and the extra mappings are removed. A third ioctl was added to bootstrap DMA. This ioctl, which is used by the X-server, moves a *LOT* of code from the X-server into the kernel. This allows the kernel to do whatever needs to be done to setup DMA buffers. The entire process and the locations of the buffers are hidden from user-mode. Additionally, a get_param query was added to differentiate between G4x0 cards and G550 cards. A gap was left in the numbering sequence so that, if needed, G450 cards could be distinguished from G400 cards. According to Ville Syrjälä, the G4x0 cards and the G550 cards handle anisotropic filtering differently. This seems the most compatible way to let the client-side driver know which card it's own. Doing this very small change now eliminates the need to bump the DRM minor version twice. http://marc.theaimsgroup.com/?l=dri-devel&m=106625815319773&w=2 A number of ioctl handlers in linux-core were also modified so that they could be called in-kernel. In these cases, the in-kernel callable version kept the existing name (e.g., drm_agp_acquire) and the ioctl handler added _ioctl to the name (e.g., drm_agp_acquire_ioctl). This patch also replaces the drm_agp_do_release function with drm_agp_release. drm_agp_release (drm_core_agp_release in the previous patch) is very similar to drm_agp_do_release, and I saw no reason to have both. This commit *breaks the build* on BSD. Eric said that he would make the required updates to the BSD side soon. Xorg bug: 3259 Reviewed by: Eric Anholt
2005-06-14 16:34:11 -06:00
};
int mga_max_ioctl = DRM_ARRAY_SIZE(mga_ioctls);