This splits a lot of the core modesetting code out into a file of
helper functions, that are only called from themselves and/or the driver.
The driver gets called into more often or can call these functions from itself
if it is a helper using driver.
I've broken framebuffer resize doing this but I didn't like the API for that
in any case.
The kernel has removed nopage so move the old nopage codepaths into a compat vm file and switch to using the fault paths.
nopfn is on its way out in the future also, so we should switch to using fault
for that path as well soon
This should work on all radeon but there is still many things todo:
- add crtc2
- tmds
- lvds
- add bios data table so we don't need to hardcode dac/crtc infos
- separate clock control to make power saving easier & cleaner
- tiling (warning tiling shouldn't be enable in double scan or interlace)
- surface reg manager (this goes along with tiling)
- suspend/resume hook
- avivo & r500 family support
- atom bios support (for posting card mostly)
- finish superioctl skeleton
- what else ? :)
Conflicts:
linux-core/Makefile.kernel
linux-core/drm_stub.c
linux-core/i915_drv.c
shared-core/i915_dma.c
shared-core/i915_drv.h
Fixup suspend/resume conflicts (basically use what's in DRM master for now).
Also fix up a few other conflicts that snuck in (i915_dma changes etc.).
All nv30 functions in nv30_graph.c that can be used on nv20 are renamed
as accordingly. nv20 specific parts from nv20_graph.c are moved into
nv30_graph.c.
Conflicts:
linux-core/drmP.h
linux-core/drm_bo.c
linux-core/drm_drv.c
linux-core/drm_objects.h
shared-core/drm.h
shared-core/i915_dma.c
shared-core/i915_drv.h
shared-core/i915_irq.c
Mostly removing typedefs that snuck into the modesetting code and
updating to the latest TTM APIs. As of today, the i915 driver builds,
but there are likely to be problems, so debugging and bugfixes will
come next.
For various reasons, this ioctl was a bad idea.
At channel creation we now automatically create DMA objects covering
available VRAM and GART memory, where the client used to do this themselves.
However, there is still a need to be able to create DMA objects pointing at
specific areas of memory (ie. notifiers). Each channel is now allocated a
small amount of memory from which a client can suballocate things (such as
notifiers), and have a DMA object created which covers the suballocated area.
The NOTIFIER_ALLOC ioctl exposes this functionality.
places).
Add new FB hooks to the drm driver structure and make i915 use them for an
Intel specific FB driver. This will allow acceleration and better handling
of the command stream.