This adds HIDAPI support for DualShock 3 controllers on Windows, addressing the current absence of this feature in SDL. To utilize this functionality, the official Sony driver 'sixaxis.sys' must be installed. HID offers several advantages over DirectInput, including rumble support and the ability to control the LED lights that display the controller number.
This reverts commit b9ab326982.
@rainerdeyke pointed out:
"This commit is incorrect. Flipping both horizontally and vertically is not equivalent to flipping diagonally."
Since SDL_RenderFlip is an enum, SDL_FLIP_HORIZONTAL and SDL_FLIP_VERTICAL can not be OR'ed to get the "SDL_FLIP_DIAGONAL".
Render code is actually able to perform these 3 kind of "flipping" so I just added a new enum called SDL_FLIP_DIAGONAL with the OR'ed value (3) so it can be used.
- Always use internal qsort and bsearch implementation.
- add "_r" reentrant versions.
The reasons for always using the internal versions is that the C runtime
versions' callbacks are not mark STDCALL, so we would have add bridge
functions for them anyhow, The C runtime qsort_r/qsort_s have different
orders of arguments on different platforms, and most importantly: qsort()
isn't a stable sort, and isn't guaranteed to give the same ordering for
two objects marked as equal by the callback...as such, Visual Studio and
glibc can give different sort results for the same data set...in this
sense, having one piece of code shared on all platforms makes sense here,
for reliabillity.
bsearch does not have a standard _r version at all, and suffers from the
same SDLCALL concern. Since the code is simple and we would have to work
around the C runtime, it's easier to just go with the built-in function
and remove all the CMake C runtime tests.
Fixes#9159.
This pull request adds an implementation of a Vulkan Render backend to SDL. I have so far tested this primarily on Windows, but also smoke tested on Linux and macOS (MoltenVK). I have not tried it yet on Android, but it should be usable there as well (sans any bugs I missed). This began as a port of the SDL Direct3D12 Renderer, which is the closest thing to Vulkan as existed in the SDL codebase. The shaders are more or less identical (with the only differences being in descriptor bindings vs root descriptors). The shaders are built using the HLSL frontend of glslang.
Everything in the code is pure Vulkan 1.0 (no extensions), with the exception of HDR support which requires the Vulkan instance extension `VK_EXT_swapchain_colorspace`. The code could have been simplified considerably if I used dynamic rendering, push descriptors, extended dynamic state, and other modern Vulkan-isms, but I felt it was more important to make the code as vanilla Vulkan as possible so that it would run on any Vulkan implementation.
The main differences with the Direct3D12 renderer are:
* Having to manage renderpasses for performing clears. There is likely some optimization that would still remain for more efficient use of TBDR hardware where there might be some unnecessary load/stores, but it does attempt to do clears using renderpasses.
* Constant buffer data couldn't be directly updated in the command buffer since I didn't want to rely on push descriptors, so there is a persistently mapped buffer with increasing offset per swapchain image where CB data gets written.
* Many more resources are dependent on the swapchain resizing due to i.e. Vulkan requiring the VkFramebuffer to reference the VkImageView of the swapchain, so there is a bit more code around handling that than was necessary in D3D12.
* For NV12/NV21 textures, rather than there being plane data in the texture itself, the UV data is placed in a separate `VkImage`/`VkImageView`.
I've verified that `testcolorspace` works with both sRGB and HDR linear. I've tested `testoverlay` works with the various YUV/NV12/NV21 formats. I've tested `testsprite`. I've checked that window resizing and swapchain out-of-date handling when minimizing are working. I've run through `testautomation` with the render tests. I also have run several of the tests with Vulkan validation and synchronization validation. Surely I will have missed some things, but I think it's in a good state to be merged and build out from here.
This better reflects how HDR content is actually used, e.g. most content is in the SDR range, with specular highlights and bright details beyond the SDR range, in the HDR headroom.
This more closely matches how HDR is handled on Apple platforms, as EDR.
This also greatly simplifies application code which no longer has to think about color scaling. SDR content is rendered at the appropriate brightness automatically, and HDR content is scaled to the correct range for the display HDR headroom.
- Simplified public API, simplified backend interface.
- Camera device hotplug events.
- Thread code is split up so it backends that provide own threads can use it.
- Added "dummy" backend.
Note that CoreMedia (Apple) and Android backends need to be updated, as does
the testcamera app (testcameraminimal works).
Renamed the following property define names to have a type suffix to
match other property names.
SDL_PROP_TEXTURE_OPENGL_TEXTURE_TARGET (number)
SDL_PROP_TEXTURE_OPENGLES2_TEXTURE_TARGET (number)
SDL_PROP_WINDOW_CREATE_WAYLAND_SCALE_TO_DISPLAY (boolean)
SDL_PROP_WINDOW_RENDERER (pointer)
SDL_PROP_WINDOW_TEXTUREDATA (pointer)
Eventually we can re-add a fast path for that data down to the individual renderers. Setting color scale would still require converting to float, and most hardware accelerated renderers prefer to consume colors as float, so this requires some thought and performance testing.
Fixes https://github.com/libsdl-org/SDL/issues/9009
The renderer will always use the sRGB colorspace for drawing, and will default to the sRGB output colorspace. If you want blending in linear space and HDR support, you can select the scRGB output colorspace, which is supported by the direct3d11 and direct3d12
This allows color operations to happen in linear space between sRGB input and sRGB output. This is currently supported on the direct3d11, direct3d12 and opengl renderers.
This is a good resource on blending in linear space vs sRGB space:
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
Also added testcolorspace to verify colorspace changes
Add a mode that forces Wayland windows to output with scaling that forces 1:1 pixel mapping.
This is intended to allow legacy applications to be displayed without desktop scaling being applied, and may have issues with some display configurations, as this forces the window to behave in a way that Wayland desktops were not designed to accommodate (rounding errors can result from certain combinations of window/scale values, the window may be unusably small, jump in size at times, or appear to be larger than the desktop space, and cursor precision may be reduced).
Windows flagged as DPI-aware are not affected by this.
The automated video test suite passes with the hint turned on.
Specifically, SDL_WinRTRunApp, SDL_UIKitRunApp, and SDL_GDKRunApp macros were
removed, as likely unnecessary to SDL3 users. A note was added to the
migration doc about how to roll replacements. These are not going into
SDL_oldnames.h.
Fixes#8245.
Modern C runtimes have well optimized memset and memcpy, so use those instead of dispatching into SDL's versions. In addition, some compilers can analyze memset and memcpy calls and directly turn them into optimized assembly.
Add the ability to import and wrap external surfaces from external toolkits such as Qt and GTK.
Wayland surfaces and windows are more intrinsically tied to the client library than other windowing systems, so it is necessary to provide a way to initialize SDL with an existing wl_display object, which needs to be set prior to video system initialization, or export the internal SDL wl_display object for use by external applications or toolkits. For this, the global property SDL_PROPERTY_GLOBAL_VIDEO_WAYLAND_WL_DISPLAY_POINTER is used.
A Wayland example was added to testnative, and a basic example of Qt 6 interoperation is provided in the Wayland readme to demonstrate the use of external windows with both SDL owning the wl_display, and an external toolkit owning it.
Allow for the creation of SDL windows with a roleless surface that applications can use for their own purposes, such as with a windowing protocol other than XDG toplevel.
The property `wayland.surface_role_custom` will create a window with a surface that SDL can render to and handles input for, but is not associated with a toplevel window, so applications can use it for their own, custom purposes (e.g. wlr_layer_shell).
A test/minimal example is included in tests/testwaylandcustom.c
A Wayland registry object can only have one listener attached at a time, so an application attempting to use the backend SDL registry object for its own purposes will just result in an error. Remove this property, as it is of no use to applications and will only result in errors.
If an application needs the registry, it needs to get the wl_display object via `SDL.window.wayland.display` and use wl_display_get_registry() to create a new registry object that it can attach its own listeners to.